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EXISTENCE OF STATIONARY EQUILIBRIUM IN AN INCOMPLETE-MARKET
MODEL WITH ENDOGENOUS LABOR SUPPLY∗
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University of International Business and Economics, Beijing, China

In this article, I first study an income fluctuation problem with endogenous labor supply. Let β be the agent’s
time discount factor and R > 0 be the constant gross rate of return on assets. For βR = 1, I show that the agent’s
wealth either approaches infinity almost surely or converges to a finite level almost surely. For βR < 1, I prove
the existence, uniqueness, and stability of the stationary distribution of state variables. I then show the existence
of the stationary general equilibrium in an incomplete-market model with endogenous labor supply.

1. INTRODUCTION

The aim of this article is to show the existence of the stationary general equilibrium in an
incomplete-market model with endogenous labor supply. There is a continuum of households
with measure 1 in the economy. Households have uninsurable idiosyncratic labor efficiency
shocks. Each household faces an income fluctuation problem with endogenous labor supply.
The labor efficiency shock follows a Markov chain along time and is independent and identically
distributed (i.i.d.) across households.

Aiyagari and McGrattan (1998) use an incomplete-market heterogeneous agents model with
endogenous labor supply to study the optimum quantity of government debt. Marcet et al.
(2007) show that incomplete insurance to idiosyncratic employment shocks introduce an ex
post wealth effect, which reduces labor supply. The ex post wealth effect on labor supply runs
counter to the precautionary savings motive.2 These articles did not show the existence of the
stationary general equilibrium. This article fills this gap.

I first study an income fluctuation problem with endogenous labor supply. Let β be the agent’s
time discount factor and R > 0 be the constant gross rate of return on assets. The net rate of
return is r = R − 1. For βR = 1, I show that the agent’s wealth either approaches infinity almost
surely or converges to a finite level almost surely as t → ∞. If wealth converges to a finite level
almost surely, then the agent’s labor supply approaches zero almost surely as t → ∞. As long as
the agent does not stop working, income shocks always exist. Precautionary savings cause wealth
accumulation to eventually reach infinity. If the agent stops working due to the income effect,
then wealth accumulation stops. Moreover, there exists upper bounds of wealth accumulation.
This general result holds as long as both consumption and leisure are normal goods. Therefore, I
extend the well-known result of Chamberlain and Wilson (2000) to situations with endogenous
labor supply.
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I find sufficient conditions guaranteeing that wealth accumulation has upper bounds for
cases of βR = 1 and βR < 1. I also find that the ratio between marginal utility functions of
consumption in different shock states plays an important role in determining precautionary
savings. To confine this ratio, we can always obtain a lower bound of the consumption policy
function for βR < 1 in a model with endogenous labor supply. Recent works by Acikgöz (2018)
and Stachurski and Toda (2019) find the lower bound of the consumption policy function for
βR < 1 in models with exogenous labor supply. I provide a general framework to investigate
income fluctuation problems with exogenous labor supply and with endogenous labor supply.
The unified framework brings us more insight into research on incomplete-market models.

I prove the existence, uniqueness, and stability of the stationary distribution of state variables
for βR < 1.3 Aiyagari (1993), Huggett (1993), and Marcet et al. (2007) employ the monotone-
Markov-process method of Hopenhayn and Prescott (1992) to show this. Kamihigashi and
Stachurski (2014) extend this method to the unbounded state space. In contrast, I use a new
method to show the existence, uniqueness, and stability of the stationary distribution, and I do
not need the monotonicity assumption of the Markov chain. The crucial observation is that the
lower bound of the state space for βR < 1 is an accessible atom. Starting from any asset level,
the state variables have positive probability to hit the lower bound in finitely many periods. That
the borrowing constraint is binding infinitely often in an income fluctuation problem implies that
the lower bound of the state space is an accessible atom. The new result highlights the impact
of borrowing constraints and precautionary savings on the stationary wealth distribution.

To show the existence of the stationary equilibrium, I find the intersection of the “supply”
and “demand” curves for the capital–labor ratio in the economy. The aggregate capital supply
is the total wealth of households in the stationary distribution of state variables. The aggregate
labor supply is the total labor supply in the stationary distribution. The “supply” curve for the
capital–labor ratio is the ratio of the aggregate capital supply to the aggregate labor supply. I
show that the “supply” curve is a continuous function of the interest rate r and tends to infinity
as r approaches r̄ = 1

β
− 1 from below. However, the infinity limit could be due to infinite wealth

accumulation or zero labor supply. From the firm’s profit-maximization problem the “demand”
curve for the ratio is derived, which approaches infinity as r tends to −δ. Following Aiyagari
(1994), I show the existence of the stationary equilibrium by finding the intersection of these
two continuous curves. Simply replacing capital by the capital–labor ratio, I extend the idea of
Aiyagari (1994) to models with endogenous labor supply. Thus I provide a general framework to
show the existence of the stationary equilibrium in incomplete-market models with exogenous
labor supply and with endogenous labor supply.

My existence proof of the stationary equilibrium also provides new insight into income
fluctuation problems. If the agent’s wealth approaches infinity almost surely as t → ∞ for the
case of βR = 1, then the aggregate capital supply converges to infinity as r ↑ r̄. If the agent’s
wealth converges to a finite level almost surely as t → ∞ for the case of βR = 1, then aggregate
labor supply approaches zero as r ↑ r̄. These limit results are due to the continuity of optimal
policy functions with respect to parameters, including interest rate r.

After I weaken the monotonicity of the Markov chain shocks, these results are more appli-
cable in simulation exercises. My existence proof of the stationary equilibrium also shows that
a bisection algorithm can find a stationary general equilibrium. Therefore, my article offers
guidance to simulation works on incomplete-market models with endogenous labor supply.

Using the concept of “tightness” of a collection of probability measures, I provide a new
probability-limit-theory tool, which extends the frequently used Theorem 12.13 by Stokey and
Lucas (1989), to investigate the parametric continuity of stationary distributions. Specifically,
I use tightness to replace compactness in the previous famous theorem. Therefore, I relax
the assumption and extend the application scope of the theorem. Equipped with this new
tool, I investigate how stationary distributions move when model parameters change and find

3 The stability here means that, starting from any initial distribution of state variables, the stochastic process converges
to the unique stationary distribution.
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the connection between parametric continuity of stationary distributions and that of optimal
policy functions.

1.1. Related Literature. Marcet et al. (2007) show that the agent’s wealth converges to a
finite level almost surely and labor supply approaches zero almost surely for βR = 1. This article
employs a more general utility function form than the work by Marcet et al. (2007), which uses
a separable and homogeneous utility function. For the labor efficiency shocks, Marcet et al.
(2007) use a two-state Markov chain that should also satisfy the monotonicity assumption. My
results can be applied to multiple-state Markov chains and I do not need the Markov chain to
be monotone.

Chamberlain and Wilson (2000) study an income fluctuation problem with stochastic interest
rates and labor earnings. They show that if the labor earnings and interest rate processes are
sufficiently volatile and the long-run average rate of interest is greater than or equal to the
time discount rate, then the household’s consumption eventually grows without bound with
probability 1. Thus, the agent’s asset also converges to infinity almost surely. Note that βR = 1
is a special case of their model. However, Chamberlain and Wilson (2000) do not investigate
the general equilibrium. They assume that the interest rate process is exogenous.

Schechtman and Escudero (1977) investigate optimal policy functions of an income fluctua-
tion problem with βR < 1. They also study the long-run properties of the wealth accumulation
process under βR < 1.4 They assume that the labor earnings shock is i.i.d. along time and its sup-
port is bounded. They show that the wealth accumulation process is bounded if the coefficient
of relative risk aversion is bounded as consumption goes to infinity.5

Aiyagari (1993) proves the existence of the stationary general equilibrium in an incomplete-
market model with inelastic labor supply and i.i.d. labor efficiency shocks. Aiyagari (1994) uses
this model to quantitatively show that precautionary savings is not important for aggregate
capital accumulation. Huggett (1993) shows the existence, uniqueness, and stability of the
stationary distribution of state variables in an incomplete-market model with serially correlated
income shocks. Huggett (1993) assumes that the income shock follows a two-state Markov chain
and the Markov chain is monotone.6

Miao (2002) shows the existence of the stationary general equilibrium in an incomplete-
market model with serially correlated income shocks. However, he assumes that the transition
function of the income shock is monotone and satisfies a smoothness condition.

Kuhn (2013) introduces permanent earnings shocks into the Aiyagari model. In Kuhn (2013)’s
work, households have inelastic labor supply and their labor efficiency shocks have random
growth components. They have a utility function of constant relative risk aversion (CRRA). To
obtain the stationary general equilibrium, Kuhn (2013) assumes that households have a death
rate. Moreover, Kuhn (2013) proves the existence of the stationary general equilibrium in the
model. However, Aiyagari (1993), Huggett (1993), Miao (2002), and Kuhn (2013) do not discuss
endogenous labor supply.

Acemoglu and Jensen (2015) study comparative statics of a class of heterogeneous agents
models, including the Bewley–Aiyagari–Huggett model. They assume that the idiosyncratic
shock follows a Markov process with the Feller property. The support of the idiosyncratic
shock is compact. They show the existence of the stationary general equilibrium. Acemoglu
and Jensen (2015) argue that their proof applies to an Aiyagari model with endogenous labor
supply. However, by applying the proof in the present article, one can easily develop a bisection
algorithm similar to that presented by Aiyagari (1994), which can then be used to find the
stationary general equilibrium.

4 Rabault (2002) investigates an income fluctuation problem in which the lowest possible level of earnings is zero and
the marginal utility of consumption is infinite when consumption is zero.

5 For research on income fluctuation problems, see also Laitner (1979, 1992), Mendelson and Amihud (1982),
Sotomayor (1984), and Clarida (1987, 1990).

6 One difference between Aiyagari (1994) and Huggett (1993) is that Aiyagari (1994)’s work has aggregate production
while the model of Huggett (1993) is an endowment economy.
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Acikgöz (2018) shows the existence of the stationary general equilibrium in an incomplete-
market model with production.7Acikgöz (2018) assumes that the earnings shock follows a
multiple-state Markov chain. Furthermore, the utility function could be unbounded. Acikgöz
(2018) shows that the wealth accumulation process of an income fluctuation problem with
βR < 1 is bounded if the coefficient of absolute risk aversion tends to zero as consumption goes
to infinity. Foss et al. (2018) show the boundedness result for an income fluctuation problem
with a multiple-state Markov chain and the CRRA utility function. Following the working paper
version of the present paper, Acikgöz (2018) shows the existence, uniqueness, and stability of
the stationary distribution of state variables in his model. Different from Acikgöz (2018) and
Foss et al. (2018), my model has endogenous labor supply.

The rest of this article is organized as follows. In Section 2, I investigate the household’s
policy functions under three cases: (i) βR > 1, (ii) βR = 1, and (iii) βR < 1. I characterize the
stationary general equilibrium and prove its existence in Section 3. Section 4 concludes the
article. Proofs are in the online appendix of Zhu (2019).

2. AN INCOME FLUCTUATION PROBLEM WITH ENDOGENOUS LABOR SUPPLY

There is a continuum of households with measure 1 in the economy. Each household faces an
income fluctuation problem with endogenous labor supply. The household has an instantaneous
utility function u(c, h) of consumption c and leisure h. The utility function u(c, h) satisfies

ASSUMPTION 1. u : R+ × [0, 1] → R is twice continuously differentiable.

ASSUMPTION 2. Case (i) u(c, h) is strictly increasing and strictly concave in c and h. u11u22 −
u21u12 > 0, u21u1 − u11u2 > 0, and u12u2 − u22u1 > 0. In addition,

lim
c→0

u1(c, h) = ∞,∀h ∈ (0, 1] and lim
h→0

u2(c, h) = ∞,∀c > 0.

Case (ii) u(c, h) = U(c) is strictly increasing, and strictly concave in c. Furthermore,

lim
c→0

U ′(c) = ∞.

Case (ii) is not included in Case (i), which requires u(c, h) to be strictly increasing and strictly
concave in c and h. However, I develop a unified framework in the present article to investigate
income fluctuation problems with exogenous labor supply and with endogenous labor supply.

ASSUMPTION 3. u(c, h) ∈ [0, M],M > 0.
Each household has the preference

E0

∞∑
t=0

βtu(ct, ht),

where β ∈ (0, 1) is the time discount factor. Each household is endowed with one unit of time.
The household faces idiosyncratic labor efficiency shocks. It is assumed that the labor efficiency
process {et}∞t=0 follows a Markov chain with a transition probability π(e′|e).

ASSUMPTION 4. et ∈ E ≡ {e1, e2, . . . , en}, with 0 < e1 < e2 < · · · < en. e′π(e′|e) = 1 for all e ∈ E
and π(e′|e) > 0 for all e, e′ ∈ E.

7 Acikgöz (2018) also gives an example that has multiple equilibria.
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There is only one risk-free asset in the economy. The constant gross rate of return on as-
sets is R > 0. The wage rate of the labor efficiency unit is w > 0.8 The household’s budget
constraint is

ct + at+1 = Rat + (1 − ht)etw,(1)

where at is the household’s asset. The household cannot borrow assets from others and thus

at+1 ≥ 0.(2)

The household’s state can be described by (a, e) ∈ [0,∞) × E.
I study the household’s problem in two steps.9 Step 1 is an intratemporal problem. The house-

hold chooses consumption and leisure to maximize the current period’s utility with respect to
the given expenditure. This step is a static maximization exercise and is irrelevant to the dynamic
optimization. I derive the indirect utility function J (y, ew) in the intratemporal problem. Step
2 is an intertemporal problem that determines the optimal expenditure in every period. I use
the indirect utility function to transform the original dynamic programming problem with two
control variables into a derived dynamic programming problem with only one control variable.10

I define the indirect utility function J (y, q) of the intratemporal problem as

J (y, q) = max
c,h

u(c, h)

s.t. c + hq = y, h ∈ [0, 1],

where y is the expenditure on consumption c and leisure h, and q is the price of leisure.
The first-order condition of the intratemporal problem is

u2(c,h)
u1(c,h) < q ⇒ h = 0
u2(c,h)
u1(c,h) > q ⇒ h = 1

h ∈ (0, 1) ⇒ u2(c,h)
u1(c,h) = q

.(3)

cs(y, q) and hs(y, q) are used to denote optimal solutions of the intratemporal problem (the
static problem).

PROPOSITION 1. Under Assumptions 1–4, we have
(1) J (y, q) is bounded.
(2) J (y, q) is strictly increasing and strictly concave in y.
(3) cs(y, q) and hs(y, q) are continuous and increasing in y.
(4) J (y, q) is continuously differentiable in y. J1(y, q) = u1[cs(y, q), hs(y, q)] for all y ∈ (0,∞).

From part (3) of Proposition 1, it is known that the demand for consumption c and leisure h
increases with an increase in income. Thus, both consumption and leisure are normal goods.

8 I assume that w > 0 for two reasons. First, we have w > 0 in the stationary equilibrium (see comments after
Theorem 8). Second, I need the bound V1(a, e) < V1(0, e) < ∞ for a > 0 and all e ∈ E, as in Proof of Lemma 5.
Moreover, the case of w = 0 apparently implies that V1(0, e) = ∞.

9 I thank Charles Wilson for the suggestions of this two-step procedure.
10 Foley and Hellwig (1975) employ this two-step procedure to study the income fluctuation problem with endogenous

labor supply. The difference between their model and my model is that the asset in their model is money. Therefore,
the return to the asset is zero in their model. In my model, I study the general case of the return to asset. The interest
rate in my model could be positive, zero, or negative.
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After I solve the utility maximization problem within the period, the original dynamic utility
maximization problem becomes

max
{yt,at+1}∞t=0

E0

∞∑
t=0

βtJ (yt, etw)

s.t.yt + at+1 = Rat + etw, yt ≥ 0.

I study the household’s problem by using the standard dynamic programming technique. Let
V (a, e) be the optimal value function of the household’s intertemporal problem. The Bellman
equation of the household’s problem is

V (a, e) = max
a′∈�(a,e)

{
J (Ra + ew − a′, ew) + βE[V (a′, e′)|e]

}
,

where

�(a, e) = {a′ : 0 ≤ a′ ≤ Ra + ew}.

Let a′(a, e) be the optimal asset for the next period and y(a, e) be the optimal total expenditure
for the current period. Proposition 2 characterizes the value function V (a, e) and the policy
functions a′(a, e) and y(a, e).

PROPOSITION 2. Under Assumptions 1–4, we have
(1) V (a, e) is continuous, strictly increasing, and strictly concave in a.
(2) V (a, e) is continuously differentiable in a, and V1(a, e) = RJ1[y(a, e), ew] for all a ∈

[0,∞).11

(3) a′(a, e) is continuous and increasing in a.
(4) y(a, e) is continuous and strictly increasing in a.

Equation (A.2) in Appendix A of the Supporting Information provides us with the Euler
equation of the intertemporal problem,

V1(a, e) ≥ βRE[V1(a′, e′)|e], with equality if a′ > 0.(4)

We define

c(a, e) = cs[y(a, e), ew],

and

h(a, e) = hs[y(a, e), ew].

Thus, c(a, e), h(a, e), and a′(a, e) are the policy functions of the original dynamic utility maxi-
mization problem. From Assumption 2, we know that c(0, e) > 0 and h(0, e) < 1 for all e ∈ E.
Thus, y(a, e) ≥ c(a, e) ≥ c(0, e) > 0 for all a ≥ 0. Therefore, we have y > 0.

To show the existence of the stationary equilibrium, stronger conditions are needed.

11 V1(0, e) is used to represent V +
1 (0, e).
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ASSUMPTION 5. Case (A) u(c, h) satisfies

u12(c, h) ≥ 0 and ∃c > 0 such that u2(c, 1) > 0,

Case (B) u(c, h) satisfies

lim sup
c→∞

�(c,�) ≤ 1,∀� ≥ 0,

where

�(c,�) = max
h,h′∈[0,1]

{
u1(c, h′)

u1(c + �, h)

}
.

Case (A) of Assumption 5 implies that consumption and leisure are complementary. Case
(B) of Assumption 5 extends Assumption 3 posited by Acikgöz (2018), lim infc→∞

U ′′(c)
U ′(c) = 0,

to models with endogenous labor supply. If Case (ii) of Assumption 2 holds, then Case (B) of
Assumption 5 reduces to lim supc→∞

U ′(c)
U ′(c+�) ≤ 1 for all � ≥ 0, which is equivalent to

lim
c→∞

U ′(c + �)
U ′(c)

= 1,∀� ≥ 0,(5)

since U ′(c)
U ′(c+�) ≥ 1. Thus, if labor supply is exogenous, Case (B) of my Assumption 5 is exactly

the same as Acikgöz (2018)’s Assumption 3.12

PROPOSITION 3. Under Assumptions 1–4, we have
(1) c(a, e) and h(a, e) are continuous and increasing in a. For e ∈ E,

lim
a→∞ h(a, e) = h̄(e),

and

lim
a→∞ c(a, e) = ∞.

(2) Case (A) of Assumption 5 implies that h(a, e) = 1 for sufficiently large a and all e ∈ E. Thus,
h̄(e) = 1 for all e ∈ E.

We define

k̄ =
{ ∞, if � is empty

inf �, if � is not empty
,(6)

where � = {a ≥ 0 : h(a, e) = 1,∀e ∈ E}. From Assumption 2, we know that c(0, e) > 0 and
h(0, e) < 1 for all e ∈ E. Thus, k̄ > 0.13 Through part (1) of Proposition 3, we know that h(a, e)
is a continuous function of a. Case (A) of Assumption 5 implies that k̄ < ∞. Thus, h(a, e) = 1
for a ≥ k̄ and all e ∈ E.

12 Given Lemma D.1 in Appendix D of the work by Acikgöz (2018), we know that Assumption 3 of the same work
implies Equation (5). On the other hand, from the Taylor expansion, we have, for � > 0, U ′(c + �) = U ′(c) + U ′′(c +
�̃)�, where �̃ ∈ [0,�]. Thus, Equation (5) implies that limc→∞ U ′′(c+�̃)

U ′(c+�̃)
= 0. Consequently, we have lim infc→∞ U ′′(c)

U ′(c) =
limc→∞ U ′′(c)

U ′(c) = 0.
13 Note that k̄ depends on w and r since h(a, e) depends on w and r.
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Case (B) of Assumption 5 seems strong. However, this case includes income fluctuation prob-
lems with exogenous labor supply and those with endogenous labor supply, and highlights the
connection between these two situations. Case (ii) of Assumption 2, which permits exogenous
labor supply, only satisfies Case (B) of Assumption 5.

2.1. The Case of βR > 1. The dynamics of the agent’s asset for βR > 1 is first investigated.
The time subscript for each variable in the Euler equation (4) is expressed explicitly:

V1(at, et) ≥ βRE[V1(at+1, et+1)|et], with equality if at+1 > 0.

Assumption 2 implies that consumption is strictly positive. Thus, V1(at, et) = Ru1(ct, ht) by
part (4) of Proposition 1 and part (2) of Proposition 2. This is the “envelope” condition of the
household’s problem.

THEOREM 1. If βR > 1 and Assumptions 1–4 hold, then limt→∞ at = ∞ almost surely.

The agent’s asset grows without bound as long as the interest rate exceeds the time discount
rate. Theorem 1 does not depend on Assumption 5. The proof of Theorem 1 uses the Super-
martingale Convergence Theorem, which is widely used in studies of the income fluctuation
problem, such as those by Schechtman (1976), Mendelson and Amihud (1982), Sotomayor
(1984), and Chamberlain and Wilson (2000).14 The asset accumulation approaches infinity since
the agent is too patient and/or the interest rate is too high.

2.2. The Case of βR = 1. There are two purposes to investigating the properties of a house-
hold’s policy functions for βR = 1. First, these properties of optimal policies help us to un-
derstand the household’s long-run behavior. It is found that the household’s wealth either
approaches infinity almost surely or converges to a finite level almost surely. Second, these
properties give us the limit of the capital–labor ratio in the stationary distribution as R ↑ 1

β

from below.
Lemma 1 describes the long-run property of the marginal return on assets. Following Cham-

berlain and Wilson (2000), I use the Supermartingale Convergence Theorem to prove it.

LEMMA 1. If βR = 1 and Assumptions 1–4 hold, then limt→∞ V1(at, et) exists and is finite al-
most surely.

Lemma 1 implies that the process {V1(at, et)}∞t=0 has a finite limit almost surely. The asset
accumulation and labor supply when V1(at, et) is given. Thus, u1(ct, ht) is fixed since V1(at, et) =
Ru1(ct, ht). Let

u1(c, h) = λ,(7)

where λ ∈ (0,∞) is a constant. From Equation (3), we know that

u2(c, h) = λew,(8)

if h ∈ (0, 1).
If Case (i) of Assumption 2 holds, we have u11u22 − u21u12 > 0. Thus, using the Implicit

Function Theorem, we know that Equations (7) and (8) imply that there exist functions ξ(λ, e)
and v(λ, e) such that

u1[κ(λ, e), v(λ, e)] = λ,

14 For the Supermartingale Convergence Theorem, see (2012, p. 498).
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and

u2[κ(λ, e), v(λ, e)] = λew,

For e ∈ E, let

λ1(e) =
{

0, if �1(e) is empty
sup �1(e), if �1(e) is not empty

,

where �1(e) = {λ > 0 : v(λ, e) ≥ 1}. From the Implicit Function Theorem, it is also known that
∂v(λ,e)

∂λ
= − u21u1−u11u2

u11u22−u21u12
< 0 for λ ∈ (0,∞). Therefore, we define

h = g(λ, e) =
{

1, λ ∈ (0, λ1(e)]
v(λ, e), λ ∈ (λ1(e),∞)

,

and

c = ξ(λ, e) =
{
ϑ−1(λ), λ ∈ (0, λ1(e)]
κ(λ, e), λ ∈ (λ1(e),∞)

,

where ϑ(c) = u1(c, 1). If Case (ii) of Assumption 2 holds, we define g(λ, e) = 0 and ξ(λ, e) =
(U ′)−1(λ) for all e ∈ E. In this case, we let λ1(e) = 0 for all e ∈ E. Thus, ξ(λ, e) and g(λ, e) are
the consumption and leisure when the marginal utility of consumption is fixed as λ.

PROPOSITION 4. If βR = 1 and Assumptions 1–4 hold, g(λ, e) is decreasing in λ ∈ (0,∞) for
e ∈ E.

We define

λ̄ = min
e∈E

{
λ1(e)

}
.(9)

For λ > λ̄, there exists e ∈ E such that g(λ, e) < 1. If λ̄ > 0, then we have

g(λ, e) = 1,∀e ∈ E,

for λ ∈ (0, λ̄]. If Case (ii) of Assumption 2 holds, we have λ̄ = 0. This case corresponds to that
of Chamberlain and Wilson (2000) with exogenous labor supply.

Following Chamberlain and Wilson (2000), I investigate the asset accumulation for βR = 1 in
a situation with endogenous labor supply. The crucial tool that I use here is the Implicit Function
Theorem. Using this theorem, it is found that consumption and leisure are determined by the
marginal utility function. By Lemma 1, the marginal utility function is fixed almost surely, as
t → ∞. I thus develop a unified framework to investigate the income fluctuation problems with
endogenous labor supply and those with exogenous labor supply.

Iterating the budget constraint (1), we have

at

Rt−τ
= aτ −

t−τ∑
j=1

[cτ+j−1 − (1 − hτ+j−1)eτ+j−1w]R−j ,(10)

for τ ≤ t. We define

χ(φ, e) = ξ(φ, e) − [1 − g(φ, e)]ew
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as consumption minus labor income when the marginal utility of consumption is fixed as φ. We
know that E is a finite set.

LEMMA 2. If βR = 1 and Assumptions 1–4 hold, then we have

χ(φ, e1) ≥ χ(φ, e2) ≥ · · · ≥ χ(φ, en),

for φ > 0. Furthermore, χ(φ, e1) = χ(φ, en) for φ ∈ (0, λ̄] and χ(φ, e1) > χ(φ, en) for φ ∈ (λ̄,∞).

Lemma 2 implies that χ(φ, e) cannot be a constant for all e ∈ E if φ ∈ (0, λ̄]. Lemma 3 then
suggests that

∑∞
j=1 χ(φ, et+j−1 )βj is sufficiently volatile if φ ∈ (0, λ̄].

LEMMA 3. If βR = 1 and Assumptions 1–4 hold, then there exists εφ > 0 for each φ > λ̄ such
that

Pr

⎛
⎝α ≤

∞∑
j=1

χ(φ, et+j−1 )βj ≤ α + εφ

∣∣∣∣∣∣et

⎞
⎠ ≤ 1 − εφ,

for any α > 0 and all et ∈ E, t ≥ 0.

For βR = 1, we know from Lemma 1 that V1(at, et) has a limit as t approaches infinity. Since
V1(at, et) = Ru1(ct, ht), u1(ct, ht) is close to some number φ for t ≥ τ, and τ is large enough. If
φ > λ̄, at is bounded since V1(at, et) is close to Rφ. Thus, letting t → ∞, we have the left-hand side
of Equation (10), at

Rt−τ , close to zero. The second term of the right-hand side of Equation (10)
is close to

∑∞
j=1 χ(φ, e

τ+j−1 )βj . Lemma 3 shows that
∑∞

j=1 χ(φ, et+j−1 )βj is sufficiently volatile.
However, aτ is known in period τ. Thus we have a contradiction. We know that u1(ct, ht)
converges to φ ≤ λ̄ as t approaches infinity. If λ̄ = 0, then we have limt→∞ V1(at, et) = 0 almost
surely. Thus we have limt→∞ at = ∞ almost surely. If λ̄ > 0, then we have limt→∞ ht = 1 almost
surely.

THEOREM 2. If βR = 1 and Assumptions 1–4 hold, then we have either

lim
t→∞ ht = 1 a.s.

or

lim
t→∞ at = ∞ a.s.

Theorem 2 provides a general framework to investigate income fluctuation problems with
exogenous labor supply and with endogenous labor supply for βR = 1. It does not need As-
sumption 5.

Chamberlain and Wilson (2000) study an income fluctuation problem with exogenous labor
supply and find that wealth accumulation is unbounded for βR = 1. Case (ii) of Assumption 2
in this article corresponds to their work. I also extend their Lemma 4 to cases with endogenous
labor supply.

Marcet et al. (2007) study an income fluctuation problem with endogenous labor supply.
They show that the agent’s wealth converges to a finite level almost surely and labor supply
approaches zero almost surely for βR = 1. I extend their results to more general situations.
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PROPOSITION 5. If βR = 1 and Assumptions 1–4 hold, then k̄ < ∞ implies that limt→∞ ht = 1
almost surely. Furthermore,

h(a, e) = 1, c(a, e) = ra, and a′(a, e) = a,

for a ≥ k̄ and all e ∈ E. If a0 ∈ [0, k̄] for process {(at, et)}∞t=0, then at ∈ [0, k̄] for all t ≥ 0, and
limt→∞ at = k̄ almost surely. Moreover, we have k̄ < ∞ in Case (A) of Assumption 5.

These policy functions imply that wealth accumulation is bounded. Theorem 2 implies that
the agent’s labor supply 1 − ht approaches zero almost surely. It is also known that the agent’s
wealth converges to a finite level almost surely in this situation. However, the limit depends
on the initial state. From Proposition 5, k̄ < ∞ implies that at = a0 for all t ≥ 0, if a0 ≥ k̄.
Households with starting asset a0 ≥ k̄, keep their starting asset a0 for t ≥ 0, and do not supply
labor.

PROPOSITION 6. If βR = 1 and Assumptions 1–4 hold, then k̄ = ∞ if and only if

lim
t→∞ at = ∞ a.s.

Proposition 6 investigates situations in which agents always face income shocks before their
wealth converges to infinity. Since labor supply is exogenous in Chamberlain and Wilson (2000),
we know that k̄ = ∞ and wealth accumulation accumulation approaches infinity almost surely.

Proposition 6 implies that we have either

Pr( lim
t→∞ at = ∞) = 1,

or

Pr ({(at, et)}∞t=0 is bounded) = 1.

From Theorem 2, we know that limt→∞ ht = 1 almost surely in the second case.
For βR = 1, limt→∞ at = k̄ almost surely, if a0 ≤ k. The agent accumulates the asset until

it reaches k̄ if a0 ≤ k̄. If a0 ≥ k̄, the agent holds the starting asset for all t ≥ 0. The agents,
whose assets are higher than or equal to k̄, do not supply labor. They do not suffer from the
labor efficiency shock. They hold constant asset levels and have perfectly smooth consumption
sequences. Agents whose starting assets are lower than k first accumulate assets and reach the
target level k. Then they stop working and reach a perfect self-insurance state. The endogenous
labor supply opens a door for agents to enter a perfect insurance situation. This gives agents
strong incentives for asset accumulation if their assets are lower than the target level k. Thus
the agent’s wealth either approaches infinity almost surely or converges to a finite level almost
surely for βR = 1.

2.3. The Case of βR < 1. The household’s policy functions for βR < 1 are characterized first.
The properties of these policy functions determine the existence, uniqueness, and stability of
the stationary distribution of state variables. Some properties of the stationary distribution for
βR < 1 are then investigated as done by Aiyagari (1994) and Huggett (1993).

LEMMA 4. If βR < 1 and Assumptions 1–4 hold, then there exists ea ∈ E for each a > 0 such
that a′(a, ea) < a.

Lemma 4 implies that, for any asset level, there is a realization of labor efficiency shock such
that the household dissaves. Thus, the process {at}∞t=0 with any initial asset a0 has a positive
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probability to be lower than a given level al < a0 in finite steps. Let

ǎ(a) = min
e∈E

{a′(a, e)}.

Thus, ǎ(a) is continuous in a since a′(a, e) is continuous in a by part 3) of Proposition 2. Through
Lemma 4, ǎ(a) < a for all a > 0. Let d = min{a − ǎ(a) : a ∈ [al, a0]}. Thus, d > 0. We can pick
the realization sequence of labor efficiency shocks e′s such that (a, e) moves along (ǎ(a), e) so
that at ∈ [al, a0] decreases by at least d in one step. Thus, starting from a0, process {at}∞t=0 reaches
levels lower than al in at most [ a0−al

d ] + 1 steps.15

Define

â(a) = max
e∈E

{a′(a, e)}.

Thus, â(a) is continuous in a since a′(a, e) is continuous in a by part (3) of Proposition 2.

PROPOSITION 7. If βR < 1 and Assumptions 1–4 hold, then k̄ < ∞ implies that a′(a, e) < a for
a ≥ k̄ and all e ∈ E. Additionally, we have k̄ < ∞ in Case (A) of Assumption 5.

From Proposition 7, we know that â(a) < a for a ≥ k̄. If consumption and leisure are com-
plementary and there exists c > 0 such that u2(c, 1) > 0, we have k̄ < ∞ from Proposition 7.
Agents with sufficiently high levels of assets do not supply labor supply and reduce assets due
to impatience.

EXAMPLE 1. Suppose that

u(c, h) = c1−γ

1 − γ
e−θc + v(h),

where γ > 1 and θ > 0. Furthermore, it is assumed that v(h) is twice continuously differen-
tiable on [0,1], v′(h) > 0, v′′(h) < 0, and limh→0 v′(h) = ∞. Apparently, Example 1 satisfies
Assumptions 1 and 2. This utility function also satisfies Assumption 3 since it has an upper
bound and, by the argument in Footnote 6 of Appendix B in the Supporting Information, we
know that optimal consumption has a lower bound that is strictly positive. Example 1 satis-
fies Case (A) of Assumption 5. However, it does not satisfy Case (B) of Assumption 5 since
lim supc→∞ �(c,�) = eθ� > 1, for all � > 0.

PROPOSITION 8. If βR < 1, Assumptions 1–4 and Case (B) of Assumption 5 hold, and then we
have

c(a, e) ≥ ra, ∀e ∈ E,

for sufficiently large a. Furthermore, there exists kb > 0 such that

a′(a, e) < a, ∀e ∈ E,

for a ≥ kb.

Rabault (2002), Benhabib et al. (2015), Acikgöz (2018), and Stachurski and Toda (2019) find
a similar lower bound of consumption policy functions in models with exogenous labor supply.

15 Here [x] denotes the largest integer less than or equal to x.
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Here I extend this result to a model with endogenous labor supply. The proof of Proposition 8
is in Appendix B of the Supporting Information.

Propostion 8 provides us with a lower bound of the consumption policy function for sufficiently
large a. If r ≤ 0, this lower bound is trivial since c(a, e) > 0 for all a ≥ 0 and e ∈ E. If r > 0, this
lower bound of the consumption policy function implies that consumption must be more than
capital income for agents with high levels of wealth.

Both Cases (A) and (B) of Assumption 5 imply that the agent with sufficiently large wealth
dissaves. Thus, process {(at, et)}∞t=0 is contractionary. Although Case (B) is an extension of
Assumption 3 in Acikgöz (2018), which concentrates on situations of exogenous labor supply,
Case (A) is independent of it. Example 1 satisfies Case (A), but does not satisfy Case (B).

Proposition 8 applies to situations with exogenous labor supply such as works by Aiyagari
(1994), Huggett (1993), and Acikgöz (2018). The following example illustrates the connection
between income fluctuation problems with endogenous labor supply and those with exogenous
labor supply.

EXAMPLE 2. Suppose that

u(c, h) = c1−γ

1 − γ
+ χ

[c + J (h)]1−σ

1 − σ
,

where χ ≥ 0 and γ > σ > 1. Furthermore, it is assumed that J (h) is twice continuously
differentiable on [0,1], J (0) = 0, J ′(h) > 0, J ′′(h) < 0, and limh→0 J ′(h) = ∞. This utility
function satisfies Assumptions 1–3 as in Example 1. Example 2 satisfies Case (B) of As-
sumption 5. If χ = 0, we have u2(c, h) = 0 for all c ≥ 0 and h ∈ [0, 1]. If χ > 0 we have
u12(c, h) = −σχ[c + J (h)]−σ−1J ′(h) < 0. Thus, Example 2 does not satisfy Case (A) of As-
sumption 5. However, we know from part 1) of Proposition 3 that lima→∞ c(a, e) = ∞ for all
e ∈ E. Furthermore,

lim
c→∞

u2(c, h)
u1(c, h)

= lim
c→∞

χ[
1 + J (h)

c

]σ

cσ−γ + χ
J ′(h) = J ′(h).

If J ′(1) > enw, then we have J ′(1) > ew for all e ∈ E. Therefore, there exists a < ∞ such that
h(a, e) = 1 for all e ∈ E. We know that k̄ < ∞. Consequently, both Propositions 7 and 8 apply
to these situations. If J ′(1) ≤ enw, then we have

u2(c, 1)
u1(c, 1)

= χ[
1 + J (1)

c

]σ

cσ−γ + χ
J ′(1) < J ′(1) ≤ enw, ∀c > 0.

Thus, we know that h(a, en) < 1 for all a > 0. Therefore, we have k̄ = ∞. Proposition 7 does
not apply to these situations, but Proposition 8 does.

THEOREM 3. If βR < 1 and Assumptions 1–5 hold, then there exists kb > 0 such that at ≤
max{kb, a0} for all t ≥ 0. Define integer

I =
{

0, if a0 ≤ kb[
a0−kb

θ

]
+ 1, if a0 > kb ,

where θ = min{a − â(a) : a ∈ [kb, a0]} > 0. We have

Pr
(

at ≤ kb,∀t ≥ I
)

= 1.
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Theorem 3 shows that asset accumulation has an upper bound in our model for βR < 1. In
the theorem, two cases corresponding to Cases (A) and (B) of Assumption 5, respectively, are
discussed. For βR < 1, I find that these are two separate sufficient conditions that guarantee the
existence of an upper bound for asset accumulation.

If Case (A) of Assumption 5 holds, an agent with a sufficiently high level of assets does
not supply labor and then acts as in the deterministic situation. In the deterministic situation,
βR < 1 implies that the agent dissaves. Thus I do not need the restriction on the coefficient of
relative risk aversion. The complementarity between consumption and leisure can guarantee
the existence of the upper bound. In this case, we can pick kb = k̄. Marcet et al. (2007) find
this upper bound for βR < 1 if the utility function is separable and homogeneous. I extend the
result to models with more general utility functions.

For the income fluctuation problem with exogenous labor supply, researchers such as Schecht-
man and Escudero (1977), Clarida (1987), and Aiyagari (1994) use the bounded coefficient of
relative risk aversion to guarantee the upper bound for asset accumulation.16 Acikgöz (2018)
uses the coefficient of absolute risk aversion to extend this condition. The difference between
my model and these early works is that labor supply is endogenous in my model. Assumption
5 provides sufficient conditions guaranteeing the existence of the upper bound for the asset
accumulation if labor supply is endogenous. Specially, I confine the ratio between marginal
utility functions of consumption in different shock states in Case (B) of Assumption 5 and,
thus, extend conditions in Schechtman and Escudero (1977) and Acikgöz (2018) to models with
endogenous labor supply. Case (B) of my Assumption 5 reveals that the ratio between marginal
utility functions of consumption in different shock states plays an important role in determining
precautionary savings. This intuition can apply to general situations in which marginal utility
functions of consumption suffer from shocks.

Theorem 3 also shows that at becomes lower than kb after I periods if the initial asset level
a0 > kb. Since â(a) represents the highest asset accumulation for asset level a and â(a) < a if a ≥
kb, at decreases monotonically whenever it is higher than kb. As a function of a, â(a), has a fixed
point in the interval [0, kb), since â(0) ≥ 0 and â(kb) < kb. Thus, the set {a ∈ [0, kb) : â(a) = a}
is not empty. Define

ā = inf
{

a ∈ [0, kb) : â(a) = a
}
.(11)

Thus, we have17

â(a) > a, if a ∈ [0, ā),

and

â(ā) = ā.

Both â(a) and ā depend on the wage rate w and the rate of return on assets r since a′(a, e)
depends on w and r. Let S = [0, ā] × E.

PROPOSITION 9. If βR < 1 and Assumptions 1–5 hold, then we have

Pr
(

(at, et) ∈ S, ∀t ≥ 0
∣∣(a0, e0) ∈ S

) = 1,(12)

16 Schecktman and Escudero (1977) also investigate a counterexample in which the coefficient of relative risk aversion
is unbounded as consumption goes to infinity. In this example, they find that the wealth accumulation approaches infinity
almost surely even under βR < 1.

17 If ā = 0, [0, ā) is empty.
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and

Pr
(∃T ≥ 1, such that (aT , eT ) ∈ S

∣∣(a0, e0) /∈ S
) = 1.(13)

Proposition 9 implies that, starting from s0 = (a0, e0) in S, the process {(at, et)}∞t=0 stays in S.
If the process starts outside S, it almost surely arrives in S. Using the Markov property of the
process {(at, et)}∞t=0 and combining Equations (12) and (13) in Proposition 9, we know that

Pr (∃T ≥ 0, such that (at, et) ∈ S,∀t ≥ T ) = 1.

LEMMA 5. If βR < 1 and Assumptions 1–4 hold, then there exists ã > 0 and ẽ ∈ E such that
a′(a, ẽ) = 0 for a ∈ [0, ã].

From Assumption 2, we know that c(0, e) > 0 and h(0, e) < 1 for all e ∈ E. We have

V1(a, e) ≤ V1(0, e) = Ru1(c(0, e), h(0, e)).

Thus, V1(a, e) is bounded. Iterating the Euler equation (4) forward, it is found that it cannot
always hold with equality if βR < 1. Thus, for any (a0, e0), the borrowing constraint (2) is binding
at some t ≥ 0. Using the Markov property of process {(at, et)}∞t=0 we know that the borrowing
constraint (2) is binding infinitely often. Lemmas 4 and 5 imply that the process {(at, et)}∞t=0 with
any initial asset a0 has a positive probability to hit the lower bound of assets a = 0 in finite steps.
State s∗ = (0, ẽ) plays a crucial role in showing the existence, uniqueness, and stability of the
stationary distribution of process {(at, et)}∞t=0.

Let B(S) be the Borel σ−algebra on S. I define the transition function P(·, ·) of the process
{(at, et)}∞t=0 on S as

P((a, e), A × {e′}) =
{
π(e′|e) if a′(a, e) ∈ A

0 otherwise
,

for all (a, e) ∈ S, A × {e′} ∈ B(S).

THEOREM 4. If βR < 1 and Assumptions 1–5 hold, then the process {(at, et)}∞t=0 is uniformly
ergodic. Precisely, {(at, et)}∞t=0 has a unique stationary distribution μ on S. Moreover, there exists
ρ ∈ (0, 1) such that18

||Pn(s, ·) − μ|| ≤ 2ρn, ∀s ∈ S,(14)

where || · || is the total variation norm.

Theorem 4 implies that process {(at, et)}∞t=0 has a unique stationary distribution. The bor-
rowing constraint and precautionary savings cause the lower bound of asset a = 0 to work as
a reflecting barrier for the process. The balance of the lower reflecting barrier and the con-
traction property of {(at, et)}∞t=0 helps us to obtain the stationary distribution of the wealth
accumulation process.

In the literature, researchers usually use the monotone-Markov-process method to prove the
existence and uniqueness of the stationary distribution. Aiyagari (1993) proves the result for
i.i.d. shocks. Huggett (1993) proves the result for two-state Markov chain shocks. For multiple-
state Markov chain shocks, the monotonicity condition is very restrictive. Furthermore, it is

18 For all s ∈ S and B ∈ B(S), Pn(s, B) denotes the probability that the process {(at, et)}∞t=0 at state s enters set B ∈
B(S) in n steps.
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difficult to verify the monotonicity condition for the joint Markov chain of the state variables,
including exogenous shocks and endogenous variables. The method used here does not require
the monotonicity of the Markov chain of the state variables. The crucial observation is that the
lower bound of the state space is an accessible atom. Starting from any asset level, the state
variables have positive probability to hit the lower bound in finite periods. This follows from
the boundedness of the marginal utility of asset, V1(a, e), and βR < 1. Assumption 5 guarantees
that asset accumulation has upper bounds for βR < 1. However, Assumption 5 only provides
two sufficient conditions. There may be other conditions guaranteeing that the state space
is compact.

For any problem with a compact state space and bounded V1(a, e), Theorem 4 should go
through for finite-state Markov shocks. The proof of Theorem 4 provides a new method to
show the existence and uniqueness of the stationary distribution for the Markov dynamic
systems. This method can apply to more general situations.

Furthermore, Equation (14) implies that, starting from any initial distribution, the stochastic
process converges to the unique stationary distribution. It is also known that it converges
to the stationary distribution geometrically fast under the total variation norm. The rate of
convergence is ρ.

After I weaken the monotonicity of the Markov chain shocks, results are more applicable in
simulation exercises. In simulations, researchers use the Tauchen method, first introduced by
Tauchen (1986), to approximate autoregressive processes estimated from real economic data.
The Tauchen method chooses values for the state variables and the transition probabilities
so that the resulting finite-state Markov chain closely mimics an underlying autoregression.
A multiple-state Markov chain surely fits the autoregressive process better than a two-state
Markov chain.

PROPOSITION 10. If βR < 1 and Assumptions 1–5 hold, then the Law of Large Numbers holds
for any B(S)−measurable function f satisfying

∫
S |f |dμ < ∞, that is

lim
m→∞

1
m

m∑
i=1

f (ai, ei) =
∫

S
fdμ, Pμ − a.s.

Since S is compact, any continuous function is integrable with respect to the probability
measure. Proposition 10 implies that the Law of Large Numbers holds for all of the moments
of the asset distribution. Thus, in order to compute the mean wealth in the stationary economy,
we do not have to simulate the asset accumulation processes for many households to find the
approximate cross-section stationary distribution and then to compute the mean wealth. We can
simulate an asset accumulation process for a long enough period and then compute the sample
path mean of the asset to approximate the cross-section mean in the stationary distribution.19

Proposition 10 shows that the path mean converges to the cross-section mean almost surely.

PROPOSITION 11. If βR < 1 and Assumptions 1–5 hold, then we have μ({(a, e) : a = 0}) > 0,
that is, the lower bound of the asset space 0 is a mass point in the stationary distribution.

State s∗ = (0, ẽ) is an accessible atom. The borrowing constraint (2) is binding infinitely often.
Whenever the borrowing constraint (2) is binding, there is a positive probability such that the
process reaches s∗ in the next period. For any (a0, e0), we have

Pr((at, et) visits (0, ẽ) infinitely often) = 1.

19 This may raise the question of how long is long enough? In practice, we can solve this problem by the following
procedure: (a) set an arbitrary large number, say 3000, for the simulation period, and after simulating for these periods,
(b) set an arbitrary small convergence criterion to test whether the path average of the simulated data for two consecutive
periods is smaller than the convergence criterion. If the test result is true, the simulation can stop.
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3. THE GENERAL EQUILIBRIUM

There is a continuum of households with measure 1 in the economy. Each household faces an
income fluctuation problem with endogenous labor supply, as in Section 2. There is uncertainty
at the individual household level but there is no aggregate uncertainty in the economy.20 There
is a single firm in the economy.

3.1. The Firm’s Problem. The single firm rents capital K and hires labor L from competitive
markets. It has an aggregate production function F (K, L) satisfying

ASSUMPTION 6. F displays constant returns to scale,withF1, F2 > 0, andF11, F22 < 0.F satisfies
Inada conditions limK→∞ F1(K, 1) = 0 and limK→0 F1(K, 1) = ∞.

The firm maximizes its profits in each period. Its profit-maximization problem is

max
K,L

{F (K, L) − (r + δ)K − wL},

where δ ∈ (0, 1) is the depreciation rate of capital, r = R − 1 is the net rate of return on capital,
and w is the wage rate of the labor efficiency unit. The first-order conditions of the firm’s
profit-maximization problem are

F1(K, L) = r + δ,(15)

and

F2(K, L) = w.(16)

Through the property of constant returns to scale, Equation (15) implies that

F1

(
K
L

, 1
)

= r + δ,(17)

and Equation (16) implies that

F2

(
1,

L
K

)
= w.(18)

From Equation (17), “demand” for the capital–labor ratio is derived,

D(r) = K
L

(r).

Following Assumption 6, D(r) represents a negative relationship between capital–labor ratio K
L

and interest rate r. It is also known that

lim
r↓−δ

D(r) = ∞,

and

lim
K
L ↓0

r = ∞.

20 To facilitate the Law of Large Numbers in the economy with a continuum of households with measure 1, I use the
construction proposed by Sun (2006).
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Furthermore, Equations (17) and (18) determine a function between wage rate w and interest
rate r, which is denoted as w(r). By Assumption 6, w(r) is continuous and strictly decreasing
in r.

3.2. Definition of the Stationary Equilibrium. Let X = [0,∞) × E. Let ϕ be a probability
measure defined on measurable space (X, B(X)), where B(X) is the Borel σ−algebra on X.
From the household problem in Section 2, we can find policy functions c(s), h(s), and a′(s) for
all s ∈ X. Thus it is easy to extend the definition of the transition function P(·, ·) to all s ∈ X,
and B ∈ B(X).22 Let K(ϕ) and L(ϕ) denote the aggregate capital and labor as functions of the
distribution ϕ. I then introduce the definition of the stationary recursive competitive equilibrium
for the economy.

DEFINITION 1. A stationary recursive competitive equilibrium with incomplete markets is a
list of functions (c(s), h(s), a′(s), ϕ, K, L) and a pair of prices (r, w) such that:

(1) c(s), h(s), a′(s) are optimal decision rules given (r, w).
(2) (r, w) satisfy the firm’s profit-maximization conditions.
(3) Market clearing conditions are satisfied:

(i)
∫

X a′(s)dϕ = K(ϕ),
(ii)

∫
X e[1 − h(s)]dϕ = L(ϕ).

(4) ϕ is a stationary distribution under the transition function P(·, ·) implied by the household’s
decision rules. Formally, ϕ satisfies

ϕ(B) =
∫

X
P(s, B)dϕ,∀B ∈ B(X).

For βR > 1, the household’s assets converge to infinity by Theorem 1. Therefore, there is no
general equilibrium. For βR = 1, the household’s labor supply converges to zero by Theorem 2.
Therefore, there is no general equilibrium. Thus, we must have βR < 1 in a general equilibrium.
We obtain Theorem 5, which extends Proposition 3 of Marcet et al. (2007) to more general
situations.

THEOREM 5. In a stationary equilibrium under incomplete markets, βR < 1.

The interest rate has to be smaller than the time discount rate in the stationary general
equilibrium under incomplete markets. In the general equilibrium under complete markets,
βR = 1. Thus, the capital–labor ratio is higher under incomplete markets than under complete
markets. As in the work by Marcet et al. (2007), precautionary savings cause a high capital–labor
ratio in the stationary general equilibrium under incomplete markets.

By Theorem 4, for βR < 1, the process {(at, et)}∞t=0 has a unique stationary distribution μ

defined on (S, B(S)), where S = [0, ā] × E and B(S) is the Borel σ−algebra on S. From Propo-
sition 9, we know that, starting from s0 = (a0, e0) outside S, the process {(at, et)}∞t=0 eventually
arrives at S almost surely, and stays there. Thus, the process {(at, et)}∞t=0 has a unique stationary
distribution on X by extending measure μ on S. The unique stationary distribution on X is
constructed by combining the stationary distribution μ on S and zero measure on (ā,∞) × E.
Thus, the extension of the measure does not influence any integral with respect to the stationary
distribution μ.

From the firm’s profit-maximization conditions in Section 3.1, wage rate w is a function of
interest rate r, and is denoted as w(r). Thus, to search for a stationary equilibrium, we only

22 The transition function P(·, ·) of the process {(at, et)}∞t=0 on X is defined as

P((a, e), A × {e′}) =
{
π(e′|e) if a(a, e) ∈ A

0 otherwise
,

for all (a, e) ∈ X, A × {e′} ∈ B(X).
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need to find the equilibrium interest rate r∗. Let r̄ = 1
β

− 1. From Theorem 4, we know that the
process {(at, et)}∞t=0 in the household’s problem has a unique stationary distribution for each
r ∈ (−1, r̄). The stationary distribution can be expressed as μ(r) to emphasize its dependence
on the interest rate r. We define the aggregate capital supply with respect to μ(r) as

A(r) =
∫

S
adμ(r).

Similarly, we express the policy function h(a, e) as h(s; r). Then we can define the aggregate
labor supply,

L(r) =
∫

S
e[1 − h(s; r)]dμ(r).

For each r ∈ (−1, r̄), a = 0 is a mass point in the stationary distribution μ(r), by Proposition 11.
From Assumption 2, we know that c(0, e) > 0 and h(0, e) < 1 for all e ∈ E. Therefore, we have
L(r) > 0 for all r ∈ (−1, r̄). 22 Thus “supply” of the capital–labor ratio is

ζ(r) = A(r)
L(r)

.(19)

3.3. The Continuity of A(r) and L(r). Following Laitner (1992), Aiyagari (1994), and
Acikgöz (2018), I will show that ζ(r) is a continuous function of r ∈ (−1, r̄). I will prove that
both A(r) and L(r) are continuous functions of r ∈ (−1, r̄). To show that, I will find a common
bounded support for sequence {μ(rm)}∞m=1 such that limm→∞ rm = r0 ∈ (−1, r̄).

Lemma 6 is a general result for real functions. I thank Prof. Jushan Bai for providing the
proof of this lemma to me.

LEMMA 6. {f n}∞n=1 is a sequence of functions on [b, d] ⊆.Assume that f n(x) is weakly increasing
in x,

lim
n→∞ f n(x) = f (x), ∀x ∈ [b, d],

and f (x) is a continuous function of x ∈ [b, d]. Then f n converges uniformly to f .

There is also parametric continuity of optimal policy functions.

PROPOSITION 12. If Assumptions 1–4 and 6 hold, then c(s; r), h(s; r), and a(s; r) are continuous
in s and r.

We describe an important property of collection {μ(r) : r ∈ (−1, r̄)}.

LEMMA 7. If Assumptions 1–6 hold, then we can find ε > 0 for each r0 ∈ (−1, r̄), such that
{μ(r) : r ∈ (r0 − ε, r0 + ε)} has a common bounded support.

Although I cannot show that there exists a uniform upper bound of ā(r) for all r ∈ (−1, r̄), I can
always find a local uniform upper bound kM(r0) for asset accumulation within a neighborhood of
r0 ∈ (−1, r̄). A common bounded support of {μ(r) : r ∈ (r0 − ε, r0 + ε)} helps show that A(r) and
L(r) are continuous at r0 ∈ (−1, r̄). The μ(r) is extended from [0, ā(r)] × E to [0, kM(r0)] × E.

22 By Assumption 4, we have 0 < e1 < e2 < · · · < en .
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However, the extension of the measure does not influence any integral with respect to the
stationary distribution because μ((ā(r), kM(r0)] × E) = 0 for r ∈ (r0 − ε, r0 + ε).

THEOREM 6. If Assumptions 1–6 hold, then we have limm→∞ A(rm) = A(r0) and
limm→∞ L(rm) = L(r0) for sequence {rm}∞m=1 such that limm→∞ rm = r0 ∈ (−1, r̄).

Theorem 6 implies that aggregate labor supply L(r) moves continuously with respect to r.
At the same time, aggregate capital supply A(r) is a continuous function of r by the definition
of the weak convergence of measures on a common bounded support. Theorem 6 also reveals
the connection between parametric continuity of stationary distributions and that of optimal
policy functions.

3.4. Existence of the Stationary Equilibrium. We also want to investigate how aggregate
labor supply L(r) and aggregate capital supply A(r) move when r approaches r̄ = 1

β
− 1 from

below. To achieve this, we need more tools of probability limit theories.
Let X be any subset of R

l. B(X) is the Borel σ−algebra on X. Let �(X, B(X)) be the
collection of probability measures on measurable space (X, B(X)). A subset � of �(X, B(X))
is called tight if, for any ε > 0, there exists a compact set C ⊂ X such that supλ∈� λ(X\C) ≤ ε.23

Let � ⊂ R
m be the space of parameters. For each θ ∈ �, let Pθ(·, ·) be a transition function on

(X, B(X)).

THEOREM 7. Assume that
a) X ⊂ R

l and � ⊂ R
m;

b) if {(xn, θn)}∞n=1 is a sequence inX × � converging to (x0, θ0), then the sequence {Pθn (xn, ·)}∞n=1
in �(X, B(X)) converges weakly to Pθ0 (x0, ·);
c) for each n ≥ 1,μn ∈ �(X, B(X)) is a fixed point of Pθn (·, ·); and
d) {μn}∞n=1 is tight.
If {θn} is a sequence in � converging to θ0, then there exists a subsequence {θni}∞i=1 such that

{μni}∞i=1 converges weakly to μ̂ ∈ �(X, B(X)), and μ̂ is a fixed point of Pθ0 (·, ·).

Theorem 7 mainly extends Theorem 12.13 posited by Stokey and Lucas (1989). Its proof is
in Appendix C of the Supporting Information.

The concept of “tightness” of a collection of probability measures plays a crucial role in
Theorem 7. Specifically, I use tightness to replace compactness in the famous theorem by
Stokey and Lucas (1989). Tightness uniformly confines the tail of a collection of probability
measures, but does not require the support of the distribution to be bounded. Therefore, I relax
the assumption and extend the application scope of the theorem. Although I obtain a result
weaker than that by Stokey and Lucas (1989) after relaxing the assumption, it turns out that
this is a convenient tool for us to find whether mass of the probability distribution is “escaping
to infinity” as its parameters change. This new result is used to investigate the dependence of
stationary distributions on model parameters and highlight the connection between parametric
continuity of stationary distributions and that of optimal policy functions.

Using Theorem 7 and parametric continuity of optimal policy functions, the limit of ζ(r) as
r ↑ r̄ is investigated.

PROPOSITION 13. If Assumptions 1–6 hold, then ζ(r) is a continuous function of r ∈ (−1, r̄).
Additionally,

lim
r↑r̄

ζ(r) = ∞.

23 X\C = {x ∈ X : x /∈ C}.
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From Proposition 6, we know that the agent’s wealth either approaches infinity almost surely
or converges to a finite level almost surely as t → ∞ for the case of βR = 1. In proof of
Proposition 13, these two situations are investigated. If the agent’s wealth approaches infinity
almost surely as t → ∞ for the case of βR = 1, then aggregate capital supply converges to
infinity as r ↑ r̄. This situation includes models with exogenous labor supply, such as those by
Laitner (1992), Aiyagri (1994) and Acikgöz (2018). If the agent’s wealth converges to a finite
level almost surely as t → ∞ for the case of βR = 1, then aggregate labor supply approaches
zero as r ↑ r̄. Marcet et al. (2007) show a special case of this situation. These limit results are
due to the continuity of optimal policy functions with respect to parameters including interest
rate r. In either case, we know that limr↑r̄ ζ(r) = ∞.

Proof of Proposition 13 reveals the connection between the case of βR = 1 and the limits of
A(r) and L(r) as r ↑ r̄. If the agent’s wealth approaches infinity almost surely as t → ∞ for the
case of βR = 1, suppose that A(r) does not diverge as r ↑ r̄, then there exists a sequence {rm}∞m=1
such that rm ↑ r̄ and {A(rm)}∞m=1 is bounded. Consequently, we know that {μ(rm)}∞m=1 is tight.
Thus, we can apply Theorem 7 to claim that there exists a stationary distribution for the case of
βR = 1. Then we have a contradiction.

If the agent’s wealth converges to a finite level almost surely as t → ∞ for the case of
βR = 1, then we know from Proposition 6 that there exists k̄(r̄) < ∞ such that h(a, e) = 1 for
a ≥ k̄(r̄) and e ∈ E. From the parametric continuity of optimal policy functions we know that
there exists ε > 0 such that collection {μ(r) : r ∈ (r̄ − ε, r̄)} has a common bounded support.
Therefore, the collection of stationary distributions is tight. Using Theorem 7 we know that
there exists a stationary distribution for the case of βR = 1, and there exists a sequence {rm}∞m=1
such that rm ↑ r̄ and {μ(rm)}∞m=1 converges weakly to this stationary distribution. Since we have
the capital–labor ratio equal to ∞ in any stationary distribution for the case of βR = 1, we know
that A(r)

L(r) approaches infinity as r ↑ r̄.
The “demand” curve for the capital–labor ratio D(r), defined in Section 3.1, approaches

the horizontal line of r = −δ, as K
L tends to infinity. The “supply” and “demand” curves for

the capital–labor ratio are combined to determine the equilibrium interest rate r∗ and the
equilibrium capital–labor ratio K

L :

D(r∗) = ζ(r∗).

THEOREM 8. If Assumptions 1–6 hold, then there exists a stationary equilibrium.

From proof of Theorem 8 in Appendix A of the Supporting Information, we know that
r < 1

β
− 1 and K

L > 0 in the stationary equilibrium. Thus, we have the equilibrium wage rate
w > 0.

Assuming that labor supply is exogenous and the earnings shock is i.i.d., Aiyagari (1994)
shows the existence of the stationary equilibrium. Following this, I show the existence of the
stationary equilibrium by finding the intersection of two continuous curves.24 The horizontal axis
of Figure IIb in the paper by Aiyagari (1994) is K. I extend this idea to models with endogenous
labor supply. Figure 1 here is obtained by simply replacing the aforementioned K by K

L on the
horizontal axis of Figure IIb. The “supply” and “demand” curves for the capital–labor ratio are
displayed in Figure 1.

I do not include Greenwood–Hercowitz–Huffman (GHH) preferences in the present article
directly since they could violate limc→0 u1(c, h) = ∞ in Assumption 2 easily. However, using a
change-of-variables method (see Section 4.3 of Acikgöz, 2018), we can also investigate GHH
preferences as an application of the case with exogenous labor supply.

This article illustrates that the “supply” curve of the capital–labor ratio is continuous. It is still
not clear whether this curve is monotone. Thus, the uniqueness of the equilibrium is ambiguous.

24 Following Aiyagari (1994), Acikgöz (2018) shows the existence of the stationary equilibrium for a model in which
labor supply is exogenous and the earnings shock follows a multiple-state Markov chain.
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FIGURE 1

“SUPPLY” AND “DEMAND” CURVES FOR THE CAPITAL–LABOR RATIO

The uniqueness is an important starting point to study the movement of equilibrium variables,
such as aggregate production and consumption, when the fundamentals of the economy, such
as preferences and technology, change. In the future, we could find conditions that determine
the uniqueness of the equilibrium.25

In this article, I assume that the interest rate is deterministic. It is shown that the asset
accumulation is bounded in the general equilibrium. Stachurski and Toda (2019) show an
impossibility theorem that concludes that the wealth distribution in Bewley models with the
deterministic interest rate inherits the tail behavior of income shocks. Setting a Bewley model
with stochastic investment returns, Benhabib et al. (2015) show that the stationary wealth
distribution has unbounded support and displays a fat tail. Since Proposition 8 of the present
article applies to more general situations in which marginal utility functions suffer from shocks,
it seems that it is difficult to generate a fat tail of the wealth distribution as soon as βR < 1 and
the ratio between marginal utility functions of consumption in different shock states is confined.
However, stochastic investment returns or stochastic time discount factors could generate large
variations of this ratio, and, thus generate a fat tail of the wealth distribution, which is close to
the pattern in real data. In the future, we could also investigate an income fluctuation problem
with endogenous labor supply and stochastic investment returns.

3.5. An Algorithm for Finding the Stationary Equilibrium. My existence proof of the sta-
tionary equilibrium has a specific advantage. Aiyagari (1994), using the proof of the existence
of the stationary equilibrium, develops a bisection algorithm to find the equilibrium interest
rate r∗. Similarly, we can use a bisection algorithm to find a stationary equilibrium.

Step (1): Guess an initial r1, which should be larger than −δ and be close to −δ, and an initial
r2, which should be smaller than 1

β
− 1 and be close to 1

β
− 1.

25 Light (2019) finds a group of sufficient conditions guaranteeing the uniqueness of the general equilibrium in a
Bewley–Aiyagari model with exogenous labor supply.
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Step (2): Set

r3 = r1 + r2

2
.

Step (3): If D(r3) − ζ(r3) > 0, let r1 = r3. Otherwise, let r2 = r3.
Step (4): If r2 − r1 < ε, stop the algorithm and let r∗ = r3. Otherwise, go back to step (2).
I provide a general framework to show the existence of the stationary equilibrium in

incomplete-market models wtih exogenous labor supply and with endogenous labor supply.
Thus, the algorithm here also applies to incomplete-market models with exogenous labor sup-
ply and with endogenous labor supply. I extend the algorithm used by Aiyagari (1994) to models
with endogenous labor supply. Therefore, my article offers guidance to simulation works on
incomplete-market models with endogenous labor supply.

4. CONCLUSION

This article first investigates an income fluctuation problem with endogenous labor supply.
For βR = 1, I show that the agent’s wealth either approaches infinity almost surely or converges
to a finite level almost surely. If wealth converges to a finite level almost surely, then the agent’s
labor supply approaches zero almost surely. I provide a general framework to investigate
income fluctuation problems with exogenous labor supply and with endogenous labor supply.
I also find sufficient conditions guaranteeing that wealth accumulation has upper bounds for
cases of βR = 1 and βR < 1.

I use a new method to show the existence, uniqueness, and stability of the stationary dis-
tribution, and I do not need the monotonicity assumption of the Markov chain. The crucial
observation is that the lower bound of the state space for βR < 1 is an accessible atom. Starting
from any asset level, the state variables have positive probability to hit the lower bound in
finite periods. That the borrowing constraint is binding infinitely often in an income fluctuation
problem implies that the lower bound of the state space for is an accessible atom.

To show the existence of the stationary equilibrium, I find the intersection of the “supply”
and “demand” curves for the capital–labor ratio in the economy. The “supply” curve for the
capital–labor ratio is the ratio of the aggregate capital supply to the aggregate labor supply. I
show that the “supply” curve is a continuous function of the interest rate r and tends to infinity
as r approaches 1

β
− 1 from below. From the firm’s profit-maximization problem the “demand”

curve for the ratio is derived, which approaches infinity as r tends to −δ. Following the work by
Aiyagari (1994), I show the existence of the stationary equilibrium by finding the intersection
of these two continuous curves. My existence proof of the stationary equilibrium also shows
that a bisection algorithm can find a general equilibrium. Therefore, my article offers guidance
to simulation works on incomplete-market models with endogenous labor supply.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section
at the end of the article.
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