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Abstract Recent studies find that sufficiently volatile idiosyncratic investment risk
plays an important role in generatingwealth inequality. I introduce idiosyncratic invest-
ment risk into the Becker and Tomes (J Polit Econ 87:1153–1189, 1979) model and
find an explicit expression of the stationary wealth distribution in this simple model.
This explicit expression brings us new insights of how bequest motives and estate
taxes influence wealth distributions. I find that inheritance increases wealth inequal-
ity in models with idiosyncratic investment risk through exaggerating labor earnings
uncertainty, while inheritance decreases wealth inequality in the Becker and Tomes
(1979) model through mitigating labor earnings uncertainty. This causes estate taxes
to have different impacts on wealth inequality in my model and the Becker and Tomes
(1979) model.
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952 S. Zhu

1 Introduction

Recent studies find that sufficiently volatile idiosyncratic investment risk plays an
important role in generating wealth inequality.1 These papers characterize the fat tail
of the stationary wealth distribution. However, they do not find the explicit expression
of the stationary wealth distribution.

I introduce idiosyncratic investment risk into the Becker and Tomes (1979) model
and set up a heterogeneous agents model with idiosyncratic investment shocks and
labor earnings shocks to investigate the impacts of bequest motives and estate taxes on
wealth distributions. Thanks to linear policy functions, I obtain the explicit expression
of the stationary wealth distribution.2

Different from Becker and Tomes (1979) and Davies (1986), I find that, in an
economy with altruistic bequest motives and idiosyncratic investment risk, bequest
motives increase the long-run wealth inequality. Most importantly, I find that estate
taxes reduce the long-run wealth inequality.

Comparing with existing studies of idiosyncratic investment risk, this paper has
two contributions. The first contribution is that the explicit expression of the station-
ary wealth distribution in this simple model brings us new insights of how bequest
motives and estate taxes influence wealth distributions in models with idiosyncratic
investment risk. This explicit expression permits me to use the decomposition tech-
nique developed by Davies (1986) to analyze the wealth accumulation process. Then
I can separate the inheritance effect from the redistribution effect of estate taxation.
I find that incorporating idiosyncratic investment risk into the wealth accumulation
process leads to the inheritance effect which decreases the long-run wealth inequality.

In this paper, the investment risk introduces a multiplicative shock to the agent’s
wealth accumulation process. Even though on average themultiplicative random coef-
ficient of the wealth accumulation equation is smaller than 1, there are some paths of
high investment returns. Along these paths, the multiplicative random coefficient con-
tinues to be greater than 1 for many periods. Individuals who keep drawing good luck
of investment returns become the rich people in the economy. Inheritance exaggerates
wealth inequality because of good luck of investment returns. However, in Becker and
Tomes (1979) the multiplicative coefficient of the wealth accumulation equation is
deterministic and smaller than 1. Inheritance has an averaging effect on labor earnings
uncertainty. Thus inheritance reduces wealth inequality.

The second contribution is that this paper uses altruistic bequest motives. Both my
paper and Benhabib et al. (2011) have idiosyncratic investment risk. In this paper,
I extend results in the Benhabib et al. (2011) model with “joy of giving” bequest
motives to models with altruistic bequest motives. I find that the extension reflects a
fundamental difference between my paper and Becker and Tomes (1979) after I also
compare two models without idiosyncratic investment risk, Becker and Tomes (1979)

1 This large class of studies includes, for example, Quadrini (2000), Cagetti and De Nardi (2006, 2009),
Benhabib et al. (2011), Panousi (2012), Shourideh (2014), Achdou et al. (2015), andBenhabib et al. (2015b).
2 Sincemymodel has linear policy functions, wealth distribution does not influence the aggregate economy.
Algan et al. (2011) built a model in which wealth redistribution can influence the aggregate output. Antunes
et al. (2015) investigated the feedback of wealth distribution on the aggregate economy.
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A Becker–Tomes model with investment risk 953

and Bossmann et al. (2007). These two papers only have idiosyncratic labor earnings
shocks. Becker andTomes (1979) use altruistic bequestmotives, while Bossmann et al.
(2007) use “joy of giving” bequest motives. However, these two papers have opposite
implications of impacts of estate taxes on the long-run wealth inequality. I find that
with only idiosyncratic labor earnings shocks, impacts of estate taxes on the long-run
wealth inequality depend on formulations of bequest motives, while with idiosyncratic
investment shocks, impacts of estate taxes on the long-run wealth inequality do not
depend on formulations of bequest motives. This is because impacts of estate taxes on
wealth inequality do not depend on the redistribution of tax revenues in models with
idiosyncratic investment shocks.

Empirical researches have not found evidences to distinguish these two bequest
motives: altruism and “joy of giving.” In a recent literature review, Kopczuk (2013)
states that “Bequest motives are the key building block for theoretical analysis of
taxation of transfers, but the empirical literature has not settled on a clear answer to
the question about the nature of bequestmotivations” (Kopczuk 2013, p. 331). Pestieau
and Thibault (2012) studied the long-run wealth distribution in an economy of agents
with heterogeneous bequest motives.3

1.1 Studies of the impact of taxes on wealth inequality

Pestieau and Possen (1979) use amodel withmultiplicative investment shocks to show
that the greater the degree of progressivity of the estate tax, the lower the long-run
wealth inequality. I study a different tax scheme from theirs.4 I investigate how the
flat estate tax affects the long-run wealth inequality in this paper.5

Benhabib et al. (2011) set up an overlapping generations (OLG) model with “joy of
giving” bequest motives. Each generation has investment shocks and labor earnings
shocks. Their model can generate a stationary wealth distribution with a fat tail, and
they show that labor earnings shocks do not influence the tail.6 They find that estate
taxes reduce the long-run wealth inequality in their model.7 In this paper, I extend
results in Benhabib et al. (2011) to models with altruistic bequest motives. Another

3 Mino and Nakamoto (2016) investigated wealth inequality in an economy of consumption externalities
and heterogeneous preferences.
4 The tax scheme in Pestieau and Possen (1979) has the form

SA = pSc
B ,

where p ≥ 1, 0 ≤ c < 1. SA represents the after-tax estate, and SB the before-tax estate. The lower the
value of c, the greater the degree of progressivity of the tax. The constant p is the instrument through which
the government returns the tax revenues to the economy.
5 The mechanisms generating stationary distributions in the two models are also different. Pestieau and
Possen (1979) study a progressive property or estate tax. They use the concavity to generate a stationary
wealth distribution. And the stationary distribution is lognormal. In this paper, I study a flat estate tax and
use a Kesten process to generate a stationary distribution with a Pareto tail.
6 Benhabib et al. (2015b) generate a stationary wealth distribution with a fat tail in an infinite-horizon
model, and their model permits agents to have the precautionary savings motive.
7 See Benhabib et al. (2015a) for careful quantitative analyses of the Benhabib et al. (2011) model.
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Table 1 The related literature

Estate taxes decrease inequality Estate taxes increase inequality

Multiplicative
shocks

Pestieau and Possen (1979) and Benhabib
et al. (2011)

NA

Additive shocks Bossmann et al. (2007) and Wan and Zhu
(2017)

Becker and Tomes (1979) and Davies
1986

important difference between Benhabib et al. (2011) and this paper is that I use the
decomposition technique developed byDavies (1986) to separate the inheritance effect
from the redistribution effect of estate taxation on wealth inequality in this paper.8

Bossmann et al. (2007), using a two-period OLG general equilibrium model with
only labor earnings shocks, finds that estate taxes reduce the long-runwealth inequality.
Wan and Zhu (2017) use the decomposition technique developed by Davies (1986) to
analyze the impact of estate taxes on wealth inequality in Bossmann et al. (2007). In
Becker and Tomes (1979), Davies (1986), and Bossmann et al. (2007), there are only
labor earnings shocks (additive shocks). Thus these models share a common feature
that the inheritance effect of estate taxes increases the long-run wealth inequality.

I summarize the literature about the impact of taxes on the long-run wealth inequal-
ity in Table 1.

Recently researchers pay attention to the impact of taxes on the transition of wealth
inequality mainly after observing the striking rise of income and wealth inequalities
in the USA in recent decades. Piketty and Saez (2003) conject that the decline of
progressive taxation since the early 1980s in the USA could be the main reason of the
increase in income inequality in recent decades, even though they cannot prove their
conjecture. Aoki and Nirei (2017) find that changes in tax rates can explain the decline
in the Pareto exponent of income distribution and the increasing trend of the top 1%
income share in the USA in recent decades. Saez and Zucman (2016) find that top
wealth shares have followed a U-shaped evolution since the early twentieth century.
Kaymak and Poschke (2016) separate the contributions of taxes, government transfers,
and the wage dispersion to the increase in wealth inequality since 1970. They find that
changes in taxes and transfers account for nearly half of the rise inwealth concentration
between 1960 and 2010. Higher wage dispersion due to skill-biased technical change
is the dominant factor, explaining 50–60% of the rise in wealth inequality. Cao and
Luo (2017) set up a general equilibrium model with idiosyncratic investment risk to
study the transition of wealth inequality.

My paper is also related to optimal capital taxation studies. Piketty and Saez (2013)
derive optimal inheritance tax formulas that capture the key equity-efficiency trade-
off. They show that the optimal tax rate could be positive and quantitatively large.9

Farhi andWerning (2010) find that optimal estate taxes should be negative. Shourideh
(2014) show that the long-run wealth distribution has a fat tail under optimal bequest

8 To isolate the redistribution effect from their mechanism, Benhabib et al. (2011) intentionally assume
that the government wastes collected revenues and does not redistribute them.
9 In a working paper version, Piketty and Saez (2012, 2013) use a multiplicative random coefficient to
generate the fat tail of the wealth distribution.
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taxes, which should be negative. Panousi and Reis (2015) investigate optimal linear
capital taxes in a model with idiosyncratic investment risk.

The rest of the paper is organized as follows. Section 2 contains the basic setup of
our model with investment risk. Section 3 presents a Becker–Tomes model with only
labor earnings risk. I investigate the impacts of bequest motives onwealth distributions
in Sect. 4. I study the impacts of estate taxes on wealth distributions in Sect. 5. Section
6 incorporates three extensions of the benchmark model. In Sect. 7, I permit the agent
to have precautionary savings. Section 8 concludes the paper. Most proofs are in
Appendix.

2 The benchmark model

There are a continuum of measure 1 agents in the economy. Each agent lives for
one period. At the end of the period, the agent dies and gives birth to one child.
The population keeps constant.10 At the beginning of his life, the agent receives an
inheritance It left by his father. The estate tax rate is b. His after-tax inheritance is
(1 − b)It . The agent’s labor earnings Ht follow a stochastic process.

Assumption 1 {Ht } is irreducible and ergodic.11,12

Themodel includes the case inwhich {Ht } is independent and identically distributed
(i.i.d.). And it also includes the interesting and realistic case of serially correlated
{Ht }.13

Assumption 2 Ht ∈ (0, H̄). In the stationary distribution of {Ht }, E(Ht ) = 1. There
exists a function f (x, y) on (0, H̄)× (0, H̄), which is uniformly bounded above, such
that

Pr (Ht+1 ≤ h | Ht = x) =
∫ h

0
f (x, y)dy, f or h ∈ (0, H̄).

The agent also receives a lump-sum transfer Gt from the government. The agent’s
after-tax wealth is

Lt = Ht + (1 − b)It + Gt .

10 Modeling a more complicated demographic structure Mierau and Turnovsky (2014) studied the rela-
tionship between demography and wealth inequality.
11 I use {xt } to denote a sequence.
12 A Markov process {xt } is irreducible if there exists a measure ϕ such that whenever ϕ(A) > 0 the
process {xt } enters the set A in finite time with a positive probability. See page 82 of Meyn and Tweedie
(2009).
13 Davies (1986) uses a mean-reverting process,

Ht = (1 − ω)Ĥ + ωHt−1 + εt ,

with 0 < ω < 1. And Ĥ is the long-run mean of Ht . He assumes that εt is independent of Ht−1 and has
a zero mean and a constant variance. To ensure Ht > 0 he assumes that εt is strictly bounded from below
by −(1 − ω)Ĥ . If we furthermore assume that εt is bounded from above and have a continuous density
function on its support, such a process {Ht } satisfies Assumptions 1 and 2 of my model.

123



956 S. Zhu

The agent’s consumption isCt . He leaves bequests Bt to his child.His budget constraint
is

Ct + Bt = Lt .

The agent has a gross interest rate R̃t+1. Thus

It+1 = R̃t+1Bt .

Assumption 3
{

R̃t

}
is i.i.d. along generations. R̃t and Ht are independent of each

other.

Both R̃t and Ht are idiosyncratic shocks, and they are i.i.d. across agents. The
stochastic rate of return on investments, R̃t , is the novelty which I introduce into the

Becker–Tomes model.14 Assuming that
{

R̃t

}
is correlated across generations adds

mathematical complexities. We leave discussions of serially correlated
{

R̃t

}
to Sect.

6.2.
Assuming that {Ht } could be serially correlated adds much mathematical complex-

ities.15 However, it will be clear later that whether {Ht } is i.i.d. or serially correlated
does not influence underlying mechanisms of the model. The aim of incorporating
the case of serially correlated {Ht } is only to set my model as close as possible to the
Becker and Tomes (1979) model.

Assumption 4 R̃t has a probability density function l(·) on [R
¯
,R̄] with R

¯
> 0.

Assumption 4 implies that R̃t is bounded.
The agent has an altruistic bequest motive. He cares about the total wealth of his

child. The agent has a constant relative risk aversion (CRRA) utility function. The
agent first draws R̃t and Ht and then makes the consumption decision. Becker and
Tomes (1979) assume that agents correctly anticipate labor earnings shocks of their
children. Here I assume that parents correctly anticipate both the investment return
and labor earnings of their children.16 The agent’s problem is

max
Ct ,Lt+1

C1−γ
t

1 − γ
+ χ

L1−γ
t+1

1 − γ

s.t. Ct + Lt+1

R̃t+1(1 − b)
= Zt , (1)

Zt = Lt + Ht+1 + Gt+1

R̃t+1(1 − b)
, (2)

14 Angeletos (2007) studies the impact of idiosyncratic investment risk on the aggregate capital stock in a
neoclassical growth model.
15 The proof of Theorem 1 could be way simplified if we assume that both {Ht } and

{
R̃t

}
are i.i.d. along

generations.
16 I relax this assumption in Sect. 7.
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where χ is the bequest motive intensity and γ ≥ 1 is the coefficient of relative risk
aversion. γ = 1 corresponds to the logarithmic utility function. As in Davies (1986)
Zt represents “family wealth.”

The optimal policy functions are

Ct = 1

1 +
[

R̃t+1(1 − b)
] 1−γ

γ
χ

1
γ

Zt , (3)

and

Lt+1 = R̃t+1(1 − b)

1 +
[

R̃t+1(1 − b)
] γ−1

γ
χ

− 1
γ

Zt . (4)

Plugging Eq. (2) into Eq. (4), we have the individual wealth accumulation process

Lt+1 = dt+1Lt + ηt+1, (5)

where

dt+1 = R̃t+1(1 − b)

1 +
[

R̃t+1(1 − b)
] γ−1

γ
χ

− 1
γ

, (6)

and

ηt+1 = 1

1 +
[

R̃t+1(1 − b)
] γ−1

γ
χ

− 1
γ

(Ht+1 + Gt+1) . (7)

The wealth accumulation Eq. (5) has a multiplicative random coefficient and an
additive random term. The investment risk introduces a multiplicative shock to the
process. In Becker and Tomes (1979) and Davies (1986), the wealth accumulation
processes only have an additive shock: the labor earnings shock. This is the most
important difference between the wealth accumulation process in this paper and those
in Becker and Tomes (1979) and Davies (1986). Benhabib et al. (2011) also derive a
wealth accumulation equation with amultiplicative random coefficient and an additive
random term.

The linear policy functions (3) and (4), induced by the CRRA utility functions,
have three advantages. Firstly, they lead to the linear wealth accumulation process (5).
Secondly, they reduce the difficulty of aggregation. Thirdly, they keep the economy
on a balanced growth path if labor earnings have a constant growth rate.17

The government taxes inheritances and redistributes the revenue to all agents in a
lump-sum form. The government has a balanced budget in every period. Thus

Gt = b
∫

Itd j,

17 I introduce an exogenous economic growth rate into the economy and extend the benchmark model in
Sect. 6.1.
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where
∫
d j represents the aggregation over all agents.

2.1 The stationary wealth distribution

To study thewealth inequality, I concentrate on the stationary distribution of thewealth
accumulation process (5). In order to guarantee that the process (5) has a stationary
distribution with the observed fat tail in the wealth data, I need more assumptions.

Assumption 5 E(dt+1) < 1.

Assumption 5 is for the stationarity of the process (5). By Theorem 1 of Brandt
(1986), we know that Assumptions 1–5 imply that the process (5) has a unique sta-
tionary distribution. The stationary wealth distribution is

L∞ =
∞∑

t=1

(
t−1∏
i=1

di

)
ηt , (8)

with the assumption that
∏0

i=1 di = 1. Also, by Theorem 1 of Brandt (1986), we
know that starting from any distribution, L0, the wealth accumulation process {Lt }
converges in distribution to the stationary distribution, L∞.

Assumption 6 E(dt+1)
2 > 1.

Assumption 6 implies that the random coefficient dt+1 is sufficiently volatile. Note
that E(dt+1)

2 > 1 implies that Pr(dt+1 > 1) > 0. It turns out Pr(dt+1 > 1) > 0 is
crucial for main results of this paper.

Theorem 1 characterizes the stationary wealth distribution.

Theorem 1 Under Assumptions 1–6, the individual wealth has a unique stationary
distribution with an asymptotic Pareto tail of an exponent 1 < μ < 2, i.e.

lim
x→∞

Pr(L∞ > x)

x−μ
= c,

with c > 0. And μ solves
E (dt+1)

μ = 1. (9)

Theorem 1 shows that investment risk causes the fat tail of the wealth distribution.
And labor earnings shocks and redistribution do not influence the tail of the wealth
distribution. Individuals who keep drawing good luck of investment shocks become
the rich people in the economy. As in Benhabib et al. (2011), this shows different
impacts of labor earnings shocks and investment shocks on wealth distributions.

By Assumption 2, labor earnings Ht is bounded. Thus the process {Ht } itself is not
powerful enough to generate the fat tail of the wealth distribution. The multiplicative
shock with large volatility generates the fat tail. The new mechanism to generating fat
tails and wealth inequality of brings us different policy implications of estate taxes on
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wealth inequality, even though my model uses altruistic bequest motives as in Becker
and Tomes (1979) and Davies (1986).

The mechanism to generating a stationary distribution with a fat tail is the combi-
nation of the stochastic growth and a lower reflecting barrier. In Eq. (5) the random
coefficient dt+1 plays the role of the stochastic growth. And the additive term ηt+1
plays the role of the lower reflecting barrier when Lt is too low.Gabaix (1999) uses this
mechanism to generating Zipf’s law of the city size distribution.18 This mechanism is
also used in Benhabib et al. (2011).

Klass et al. (2006), using the Forbes 400 lists during 1988–2003, find that the top
wealth in the USA is distributed according to a Pareto distribution with an average
exponent of 1.49. Thus I concentrate on situations in which μ < 2. Assumption 6
guarantees μ < 2 in the model. However, μ < 2 implies that the stationary wealth
distribution does not have a finite variance. Thus I could not use the coefficient of
variation as the inequality measure, even though Becker and Tomes (1979) and Boss-
mann et al. (2007) use it. I will use the Pareto exponent as the inequality index when
I investigate the comparative statics of the wealth distribution in an economy with
idiosyncratic investment risk.

The investment risk in my model introduces a multiplicative shock to the agent’s
wealth accumulation process. The multiplicative random coefficient in the wealth
accumulation equation generates the fat tail of the wealth distribution. The new mech-
anism to generating fat tails and inequality of wealth distributions leads to results
different from those in Becker and Tomes (1979) and Davies (1986). Theorem 2 is
useful for the comparative static analysis of the wealth inequality in my model.

Theorem 2 Suppose that dt+1 first-order stochastically dominates d ′
t+1.19 Then the

Pareto exponent μ of the stationary wealth distribution under dt+1 is smaller than
under d ′

t+1.

A higher dt+1 (for almost all paths) implies that the wealth accumulation process
(5) is more persistent. This leads to a fatter tail of the wealth distribution. For agents
who draw dt+1 > 1, a higher dt+1 causes faster growth of wealth. This increases the
wealth inequality.

By the linearity of the policy functions, we can calculate the aggregate wealth of
the economy in the steady state,

18 Zipf’s law refers to a distribution with an asymptotic Pareto tail of an exponent close to 1.
19 Let FX (x) and FY (x) be the distribution functions of random variables X and Y , respectively. X first-
order stochastically dominates Y , denoted as X �FSD Y , if, and only if,

FX (x) ≤ FY (x)

for all x ∈ R. See page 2 of Müller and Stoyan (2002).
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E (Lt ) =
∫

Ltd j = (1 − b)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − E (dt+1)

E

⎛
⎝ 1

1+
[

R̃t+1(1−b)
] γ−1

γ
χ

− 1
γ

⎞
⎠

− b

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1

.

Also, we have

G = b
∫

Itd j = b

(∫
Ltd j −

∫
Htd j

)
= b [E (Lt ) − 1] .

3 The Becker–Tomes model

In this section, I briefly review some main results of Becker–Tomes models by Becker
and Tomes (1979) and Davies (1986). In the Becker–Tomes model, agents only face
idiosyncratic labor earnings shocks. Thus wealth accumulation equation only has an
additive shock, the labor earnings shock.

Using constant R to replace R̃t+1 in Sect. 2 we have the wealth accumulation
process

Lt+1 = δLt + θ (Ht+1 + Gt+1) (10)

where

δ = R(1 − b)

1 + [R(1 − b)]
γ−1
γ χ

− 1
γ

(11)

and

θ = 1

1 + [R(1 − b)]
γ−1
γ χ

− 1
γ

. (12)

Equation (10) is not a special case of Eq. (5) since we assume that E(dt+1)
2 > 1

for Eq. (5) (Assumption 6). In Eq. (10) δ is a constant. Thus it does not satisfy the
volatility assumption of dt+1 in Eq. (5).

The government budget constraint is Gt = b
∫

Itd j where
∫
d j represents the

aggregation over all agents.

3.1 The stationary wealth distribution

To study thewealth inequality, I concentrate on the stationary distribution of thewealth
accumulation process (10). As in Becker and Tomes (1979) and Davies (1986), I
assume that 0 < δ < 1. By Theorem 1 of Brandt (1986), we know that the process
(10) has a unique stationary distribution. The stationary wealth distribution is

L∞ = θ

∞∑
t=1

δt−1 (Ht + Gt ) . (13)

123



A Becker–Tomes model with investment risk 961

Also, we know that starting from any distribution, L0, thewealth accumulation process
{Lt } converges in distribution to the stationary distribution, L∞.

By the linearity of the policy functions, we can calculate the aggregate wealth of
the economy in the steady state,

E (Lt ) =
∫

Ltd j = 1 − b

1 + [R(1 − b)]
γ−1
γ χ

− 1
γ − [R(1 − b) + b]

.

Also, we have
G = b [E (Lt ) − 1] .

By writing the stationary wealth distribution in the form of (13), Davies (1986)
invents a decomposition technique to study the impact of estate taxes onwealth inequal-
ity. He separates the inheritance effect and the redistribution effect of estate taxes on
wealth inequality. The channel through which estate taxes influence δt−1 in (13) is
called the lag structure effect. The channel through which estate taxes influence Gt

in (13) is called the transfer effect. Davies (1986) uses this decomposition technique
to investigate the mechanism through which estate taxes increase the long-run wealth
inequality in Becker and Tomes (1979).20 In Sect. 5.1, I employ this decomposition
technique to analyze impacts of estate taxes on wealth inequality in my model.

An important contribution of Davies (1986) is that he theoretically shows inheri-
tance reduces wealth inequality in the Becker and Tomes (1979) model. Let W (·) be
inequalitymeasures defined over relativewealth that obey the Pigou–Dalton “principle
of transfers.” Here is Proposition 1 of Davies (1986).

Proposition 1 (Davies 1986) W (L∞) < W (L ′∞) where

(i) L∞ = θ
∑∞

t=1 δt−1 (Ht + Gt );

(ii) L ′∞ = θ ′∑∞
t=1

(
δ′)t−1

(Ht + Gt );
(iii) 0 < δ′ < δ < 1.

In order to see the intuition of Proposition 1, we rewrite expression (13) as

L∞ = θ

1 − δ

∞∑
t=1

(1 − δ)δt−1 (Ht + Gt ) . (14)

Let X =∑∞
t=1(1−δ)δt−1 (Ht + Gt ). We know that L∞ and X have the same Lorenz

curve.21 Note that X is a weighted average of {Ht + Gt }. This averaging effect helps
to cancel the uncertainty of {Ht + Gt }. Proposition 1 shows that the higher δ the
stronger the averaging effect. Proposition 1 does not assume that {Ht } is i.i.d. along
generations. It even holds for serially correlated {Ht }.

20 Wan and Zhu (2017) apply this decomposition technique and find that different formulations of bequest
motives affect the redistribution effect (the transfer effect) of estate taxes. See discussions in Sect. 5.2.
21 For a nonnegative random variable Y with a finite positive mean and a constant c > 0, Y and cY have
the same Lorenz curve, i.e., a Lorenz curve satisfies the scale invariance axiom.
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Note that {Gt } does not change in expressions of L∞ and L ′∞ in Proposition 1.
Using the same sequence of {Gt }, Davies (1986) isolates the inheritance effect from
the redistribution effect of estate taxes. The higher Gt , the more equal the distribution
of {Ht + Gt }. If policy reforms cause a higher Gt , the redistribution effect reduces
wealth inequality. If policy reforms cause a lowerGt , the redistribution effect increases
wealth inequality.22,23

4 Bequest motives and wealth distributions

In order to investigate the impact of bequest motives on wealth inequality, we set
b = 0. Thus Gt = 0.

From expression (6), we know that dt+1 increases with the bequest motive χ . Note
that dt+1 is a random variable in Eq. (5), while δ is deterministic in Eq. (10). A higher
dt+1 causes a higher mean of wealth in the stationary distribution. A higher δ also
implies that the wealth accumulation process (10) is more persistent and that the sta-
tionary wealth distribution has a higher mean. However, the increase in persistency of
processes (5) and (10) has different impacts on the dispersion of the wealth distribu-
tion. Even though δ < 1 has the averaging effect in Eq. (14), di in Eq. (8) does not. On
the contrary, for those paths through which di continue to be greater than 1 for many
periods,

∏t−1
i=1 di is exploding in Eq. (8).

Applying Theorem 2, we have

Proposition 2 In an economy with idiosyncratic investment risk, the higher the
bequest motive χ , the fatter the tail of the wealth distribution.

A higher χ increases the persistency of process (5). Proposition 2 shows that the
higher the bequest motive intensity, the higher the wealth inequality.

Davies (1986) finds a seemingly counterintuitive result of the Becker and Tomes
(1979) model.

Proposition 3 In an economy without idiosyncratic investment risk, the higher the
bequest motive χ , the more equal the wealth distribution.

Note that δ increases with the bequest motive χ . Proposition 3 follows directly
from Proposition 1. In a model with only labor earnings risk, a higher bequest motive
reduces wealth inequality. Through the view of averaging, it is not difficult for us to
understand this result.

Propositions 2 and3 imply that the impact of bequestmotives onwealth distributions
depends on the idiosyncratic investment risk. Comparisons between expressions (8)
and (14) show that inheritance plays the role of averaging labor earnings uncertainty
when the investment return is deterministic. But with sufficient volatility of investment
risk due to Assumption 6, inheritance exaggerates labor earnings uncertainty.

22 This intuition comes from themathematical result that X +a Lorenz dominates X +b for any nonnegative
random variable X with a finite positive mean and a > b > 0 (see Theorem 3.A.25 of Shaked and
Shanthikumar 2010). Thus X + a is more equal than X + b.
23 See more discussions about the redistribution effect in Sect. 5.2.
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To study the impact of bequest motives on wealth inequality also helps us to under-
stand the inheritance effect of estate taxes. When we investigate the inheritance effect
of estate taxes, we have to keep redistribution constant. It is difficult to isolate the
inheritance effect from the redistribution effect by adjusting the estate tax rate b. But
in terms of the inheritance effect, increasing the estate tax rate b is equivalent to
decreasing the bequest motive χ in expressions of (6) and (11).

5 Estate taxes and wealth distributions

Becker and Tomes (1979) and Davies (1986) show that taxing bequests increases the
long-run wealth inequality in an economy with only labor earnings shocks. In this
section I investigate the impact of estate taxes on the long-run wealth inequality in an
economy with investment shocks and labor earnings shocks.

Proposition 4 shows a result different from those of Becker and Tomes (1979) and
Davies (1986).

Proposition 4 dt+1 decreases with the estate tax rate b. Thus in an economy with
idiosyncratic investment risk, the higher the estate tax rate b, the thinner the tail of
the wealth distribution.

Proposition 4 implies that a higher estate tax rate reduces the long-run wealth
inequality. In this paper, a higher estate tax rate cuts the return to bequests. After the
government increases the tax rate, wealth accumulates slower even for the agent who
draws a good rate of return. Formula (9) of Theorem 1 shows that redistribution does
not influence the tail of the wealth distribution. Investment risk plays a crucial role in
Proposition 4.

5.1 The decomposition technique

I then use the decomposition technique developed by Davies (1986) to analyze the
impact of estate taxes on wealth inequality.

By writing the stationary wealth distribution in the form of (8), I can separate the
inheritance effect and the redistribution effect of estate taxes as in Davies (1986). In
expression (8), the term

∏t−1
i=1 di reflects the inheritance effect of estate taxes. Note

that di depends on the estate tax rate b by Eq. (6). In expression (8), the term ηt

reflects the redistribution effect, since government redistribution Gt is embedded in ηt

by Eq. (7). Comparing expressions of (8) and (13), I find that my model has a different
inheritance effect from Becker and Tomes (1979) and Davies (1986). In these papers,
the inheritance effect of estate taxes increases wealth inequality because it reduces the
averaging force of inheritance. With investment return luck, inheritance does not have
the weighted average effect on labor income luck, since some realizations of di are
greater than 1 in Eq. (8). On the contrary, inheritance exaggerates wealth inequality.
Thus in my model the inheritance effect of estate taxes reduces wealth inequality
because it mitigates the amplifying force of inheritance.
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Davies (1986) shows that the lag structure effect (the inheritance effect) is valid in
both altruistic and nonaltruistic models.24 The finding here and that in Benhabib et al.
(2011) show that the inheritance effect in economies with idiosyncratic investment
risk is also valid in both altruistic and nonaltruistic models. However, the inheritance
effect in my model and that in Davies (1986) are opposite.

Benhabib et al. (2011) show that a higher estate tax rate causes a thinner tail of
the wealth distribution in a model with “joy of giving” bequest motives. I show here
that a higher estate tax rate leads to a thinner tail of wealth distribution in an altruistic
model. Discussions here also help us to understand impacts of estate taxes on wealth
inequality in Benhabib et al. (2011). Adopting the decomposition technique invented
by Davies (1986), I show key mechanisms which lead to different effects of estate
taxes on wealth inequality in the Becker and Tomes (1979) model and in the Benhabib
et al. (2011) model.

5.2 Redistribution

Mymodel shows that estate taxes reduce wealth inequality in an economy with invest-
ment shocks. Bossmann et al. (2007) find that estate taxes reduce the long-run wealth
inequality in a model with only labor earnings shocks. Both my model and Bossmann
et al. (2007) find results different from Becker and Tomes (1979) and Davies (1986).

Theorem 1 shows that redistribution does not influence the tail of the wealth dis-
tribution in my model. Thus the mechanism of my paper does not depend on the
redistribution effect, while results in Bossmann et al. (2007) hinge on the redistribu-
tion effect of estate taxes.

Both Becker and Tomes (1979) and Davies (1986) use altruistic bequest motives.
In Becker and Tomes (1979) and Davies (1986), the redistribution effect of estate
taxes increases wealth inequality. After the government increases the estate tax rate,
the percentage decrease in before-tax bequests may exceed the percentage increase in
the tax rate. Thus a higher tax rate does not necessarily cause higher tax revenues and
redistribution.

The elasticity of before-tax bequests with respect to estate taxes is different under
different formulations of bequest motives. As found in Bossmann et al. (2007), the
direction of the redistribution effect of estate taxes depends on the formulations of
bequest motives. Bossmann et al. (2007) uses “joy of giving” bequest motives. The
redistribution effect of estate taxes reduces wealth inequality.

Wan andZhu (2017) find that the inheritance effect of estate taxes inBossmann et al.
(2007) is in line with that in Becker and Tomes (1979) and Davies (1986). It increases
wealth inequality.Wan andZhu (2017) show that it is the different redistribution effects
that cause the impact of estate taxes on wealth inequality in Bossmann et al. (2007) to
be different from that in Becker and Tomes (1979) and Davies (1986).

In stead of revising the redistribution effect, my paper revises the inheritance effect
in Becker and Tomes (1979). And the result in my paper does not depend on redistri-
bution. Thus it does not depend on formulations of bequest motives.

24 See comments in the last paragraph of page 547 of Davies (1986).
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6 Extensions

In this section, I investigate three extensions of the benchmark model in Sect. 2. In
the first extension, I introduce economic growth into the benchmark model. I also
discuss the effect of economic growth on wealth inequality. In the second extension,
I permit distributions of investment returns to be correlated across generations. In the
third extension, I rule out negative bequests by adding the borrowing constraint. These
extensions show that the main results of the benchmark model, that bequest motives
increase wealth inequality and estate taxes reduce wealth inequality, remain to be true,
i.e., Propositions 2 and 4 still hold.

6.1 Economic growth

The benchmark model is a stationary economy. To permit economic growth, I assume
that

Ht = Ĥt g
t ,

where g > 1 is the gross grow rate of labor earnings, and Ĥt is the detrended labor

earnings. I assume that
{

Ĥt

}
and

{
R̃t

}
satisfy Assumptions 1–6. Thus the aggregate

economy also has a gross growth rate g. We divide individual variables by gt to obtain
normalized variables. Let L̂ t = (Lt ) /

(
gt
)
and Ĝt+1 = (Gt+1) /

(
gt+1

)
. Thus from

Eq. (5) we have

L̂ t+1 = dt+1

g
L̂t + η̂t+1, (15)

where dt+1 is the same as in Eq. (6) and

η̂t+1 = 1

1 +
[

R̃t+1(1 − b)
] γ−1

γ
χ

− 1
γ

(
Ĥt+1 + Ĝt+1

)
.

After I introduce the growth rate into the economy, the wealth process {Lt } does not
have a stationary distribution. However, we can investigate the stationary distribution

of the normalizedwealth process
{

L̂ t

}
. Thuswe can obtain the counterpart of Theorem

1 for the normalized wealth process
{

L̂ t

}
. The stationary distribution of the process{

L̂ t

}
has an asymptotic Pareto tail of an exponent μ. Using (dt+1) /g to replace dt+1

in Eq. (9) we know that μ solves

E

(
dt+1

g

)μ

= 1.

It is easy to derive the counterparts of Propositions 2 and 4 in an economy with a
positive growth rate. In an economy with idiosyncratic investment risk, the higher the
bequest motive χ , the fatter the tail of the wealth distribution. The higher the estate
tax rate b is, the more equal the wealth distribution is.
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Piketty (2014) finds that a higher economic growth rate causes the capital’s share
of income to be lower. This implies lower income inequality between capital owners
and laborers. I can also use my model to study the impact of economic growth on

wealth inequality. Applying Theorem 2 to the stochastic process
{

L̂ t

}
, we have

Proposition 5 In an economy with idiosyncratic investment risk, the higher the eco-
nomic growth rate g, the thinner the tail of the wealth distribution.

Proposition 5 shows that the higher the economic growth rate g, the lower the
wealth inequality. In an economy with idiosyncratic investment risk, individuals who
keep drawing high rates of return for a while enter the top of the wealth distribution.
A higher economic growth rate g implies higher growth of the average wealth in the
economy. Thus individuals who have good luck may not differentiate them faster from
the average wealth. This is the intuition behind Proposition 5.

However, I also find that the impact of economic growth on wealth inequality
depends on the idiosyncratic investment risk. Using Ĥt+1gt+1 to replace Ht+1 in Eq.
(10), we obtain

L̂ t+1 = δ

g
L̂t + θ

(
Ĥt+1 + Ĝt+1

)
, (16)

in the Becker–Tomes model without idiosyncratic investment risk. Here δ and θ are
the same as in Eqs. (11) and (12), respectively. Using Proposition 1, Davies (1986)
shows.25

Proposition 6 In an economy without idiosyncratic investment risk, the higher the
economic growth rate g, the less equal the wealth distribution.

Proposition6 shows that the higher the economicgrowth rate g, the higher thewealth
inequality. The result of Proposition 6 is opposite to that of Proposition 5. Inheritance
plays the role of averaging labor earnings uncertainty in the Becker–Tomesmodel with
only labor earnings risk. From Eq. (16) we find that a higher growth rate g essentially
reduces the averaging effect of inheritance. Thus a higher growth rate g causes a less
equal wealth distribution.

6.2 Markov-dependent R̃t

Children could inherit parents’ investment abilities through either genes or family
backgrounds. Thus distributions of investment returns could be correlated across

generations. I assume
{

R̃t

}
is i.i.d. along generations in the benchmark model. In

this subsection, I generalize this assumption and
{

R̃t

}
are permitted to be Markov-

dependent. We need a group of assumptions, Assumptions 1′ ∼ 7′, which are listed
in Sect. A.6 of the Appendix.

25 See footnote 15 of Davies (1986).
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Proposition 7 Under Assumptions 1′ ∼ 7′, the individual wealth has a unique sta-
tionary distribution with an asymptotic Pareto tail of an exponent μ > 1, i.e.

lim
x→∞

Pr(L∞ > x)

x−μ
= c,

with c > 0. And μ solves


(μ) ≡ lim
n→∞

1

n
log E

[
n−1∏
i=1

(di )
μ

]
= 0.

Assuming Markov-dependent R̃t , we can show the counterpart of Proposition 2.

Proposition 8 In an economy with idiosyncratic investment risk, the higher the
bequest motive χ , the fatter the tail of the wealth distribution.

Similarly, we can also show the counterparts of Propositions 4 and 5. In an economy
with idiosyncratic investment risk, the higher the estate tax rate b, the thinner the tail
of the wealth distribution. The higher the economic growth rate g is, the more equal
the wealth distribution is.

6.3 The borrowing constraint

The third extension is to introduce a borrowing constraint into the model. Parents
cannot borrow money from their children without frictions. In this subsection, I con-
centrate on the stationary equilibrium of the economy. Thus the lump-sum transfer
from the government G is constant.

We need the following assumptions for this subsection.

Assumption 1′′. {Ht } and
{

R̃t

}
are i.i.d. along generations. R̃t and Ht are independent

of each other.
Assumption 2′′. Ht has a probability density function f (·) on (0, H̄).
Assumption 3′′. R̃t has a probability density function l(·) on [R

¯
,R̄] with R

¯
> 0.

Assumption 4′′. E(dt+1) < 1.
Assumption 5′′. E(dt+1)

2 > 1.
The agent’s problem with the borrowing constraint is

max
Ct ,Bt ,Lt+1

C1−γ
t

1 − γ
+ χ

L1−γ
t+1

1 − γ

s.t. Ct + Bt = Lt ,

Lt+1 = Ht+1 + (1 − b)R̃t+1Bt + G,

Bt ≥ −θ Lt ,

where 0 ≤ θ < 1. Here Bt ≥ −θ Lt is the borrowing constraint. Note that θ = 0
corresponds to the nonnegative constraint on bequests, Bt ≥ 0.
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Let φt+1 =
[

R̃t+1(1−b)χ
]− 1

γ
(Ht+1+G)

1+θ

(
1+
[

R̃t+1(1−b)
] γ−1

γ
χ

− 1
γ

) . The optimal policy functions are

Ct =

⎧⎪⎨
⎪⎩

(1 + θ)Lt , if Lt ≤ φt+1
1

1+
[

R̃t+1(1−b)
] 1−γ

γ
χ

1
γ

[
Lt + Ht+1+G

R̃t+1(1−b)

]
, otherwise ,

Bt =

⎧⎪⎪⎨
⎪⎪⎩

−θ Lt , if Lt ≤ φt+1

1

1+
[

R̃t+1(1−b)
] γ−1

γ
χ

− 1
γ

⎛
⎝Lt − Ht+1+G[

R̃t+1(1−b)χ
] 1

γ

⎞
⎠ , otherwise ,

and

Lt+1 =
{

Ht+1 − (1 − b)R̃t+1θ Lt + G, if Lt ≤ φt+1
dt+1Lt + ηt+1, otherwise

,

where dt+1 and ηt+1 are the same as in Eqs. (6) and (7), respectively.
The policy functions in this subsection are piecewise linear, while those in the

benchmark model are linear. Nevertheless, we can obtain the counterpart of Theorem
1.

Proposition 9 Under Assumptions 1′′ ∼ 5′′ , the individual wealth has a unique
stationary distribution with an asymptotic Pareto tail of an exponent 1 < μ < 2, i.e.

lim
x→∞

Pr(L∞ > x)

x−μ
= c,

with c > 0. And μ solves
E (dt+1)

μ = 1.

From Proposition 9, we know that the relationship, E (dt+1)
μ = 1 still holds. Thus

we can show the counterparts of Propositions 2 and 4. In an economywith idiosyncratic
investment risk and borrowing constraints, the higher the bequest motive χ , the fatter
the tail of the wealth distribution. The higher the estate tax rate b is, the thinner the
tail of the wealth distribution is.

7 Unobservable R̃t+1

In the benchmarkmodel, I assume that parents correctly anticipate both the investment
return and labor earnings of their children. Here I assume that the gross interest rate
R̃t+1 and labor earnings of children Ht+1 are unobservable for parents. But parents
know the distributions of R̃t+1 and Ht+1. In this section, I concentrate on the stationary
equilibrium of the economy. Thus the lump-sum transfer from the government G is
constant.26

26 The proofs of the results in this section are quite long. I put them in the online technical appendix (Zhu
2018).
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We need the following assumptions.

Assumption 1′′′. {Ht } and
{

R̃t

}
are i.i.d. alonggenerations. R̃t and Ht are independent

of each other.
Assumption 2′′′. Ht has a probability density function f (·) on (0, H̄).
Assumption 3′′′. R̃t has a probability density function l(·) on [R

¯
,R̄] with R

¯
> 0.

Assumption 4′′′. E
(

R̃t+1

) [
(1 − b)χ E

(
R̃t+1

)1−γ
] 1

γ

< 1.27

Assumption 5′′′. R̄ is large enough and

H̄ + G > [(1 − b)χ ]−
1
γ

[
E
(

R̃t+1 (Ht+1 + G)−γ
)]− 1

γ
.

The agent’s problem is

max
Ct ,Bt ,Lt+1

C1−γ
t

1 − γ
+ χ E

(
L1−γ

t+1

1 − γ

)

s.t. Ct + Bt = Lt ,

Lt+1 = Ht+1 + (1 − b)R̃t+1Bt + G,

Bt ≥ 0,

where Bt ≥ 0 is the borrowing constraint. Parents have the nonnegative constraint on
bequests

The optimal Ct is determined by the first-order condition,

Ct

= min

{
Lt , [(1 − b)χ]−

1
γ

{
E

(
R̃t+1

[
(1 − b)R̃t+1 (Lt − Ct ) + Ht+1 + G

]−γ
)}− 1

γ

}
.

(17)

We denote
Ct = C (Lt ) ,

and
Bt = B (Lt ) = Lt − C (Lt ) .

Thus C (Lt ) is a continuous function of Lt . Also, B (Lt ) is a continuous function of
Lt . The individual wealth process {Lt } is generated by

Lt+1 = Ht+1 + (1 − b)R̃t+1B (Lt ) + G.

Let L
¯
= G. We have Lt+1 ≥ L

¯
for ∀Lt > 0. Thus L

¯
= G is a reflecting barrier of the

process {Lt }.

27 Note that Assumption 4′′′ implies that (1 − b)χ E
(

R̃t+1

)
< 1.
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In the online Appendix A.9, I show that B(Lt )
Lt

≤ 1 − φ, where

φ = 1

1 +
[

E
(

R̃t+1

)1−γ
] 1

γ

(1 − b)
1−γ
γ χ

1
γ

.

Note that 0 < φ < 1. Thus we have

Lt+1 = Ht+1 + (1 − b)R̃t+1B (Lt ) + G

≤ Ht+1 + (1 − φ) (1 − b)R̃t+1Lt + G.

Let
ρ̃t+1 = (1 − φ) (1 − b)R̃t+1.

Thus
Lt+1 ≤ ρ̃t+1Lt + Ht+1 + G.

Assumption 4′′′ implies that E (ρ̃t+1) < 1.

Theorem 3 The individual wealth process {Lt } is ergodic and hence has a unique
stationary distribution. The support of the stationary distribution is unbounded.

I assume that R̃t+1 and Ht+1 are unobservable for parents. Thus parents have
precautionary savings. Thus, different from those in the benchmark model, the policy
functions here are nonlinear. However, these policy functions are asymptotically linear.
I have a characterization of the tail of the stationary wealth distribution L∞.

Definition 1 A distribution X is said to have a right fat tail if there exists μ > 0 such
that

lim inf
x→+∞

Pr(X > x)

x−μ
≥ c,

where c is a positive constant.

Theorem 4 The stationary wealth distribution L∞ has a fat tail.

Following Benhabib et al. (2015b), I use a comparison method to show the fat-tail
result in Theorem 4. I also have a result of comparative statics.

Theorem 5 Suppose that there are two estate tax rates b and b′, b < b′. Under b′,
there exists μ′ > 1 such that

lim inf
x→+∞

Pr(L ′∞ > x)

x−μ′ ≥ c′,

with c′ > 0. Then, under b we can always find 1 < μ ≤ μ′ such that

lim inf
x→+∞

Pr(L∞ > x)

x−μ
≥ c,

with c > 0.
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Theorem 5 implies that, in an economy with idiosyncratic investment risk and
precautionary savings, the higher the estate tax rate b, the thinner the tail of the wealth
distribution. Similarly, we can show that the higher the bequest motive χ is, the fatter
the tail of the wealth distribution is.

7.1 A portfolio selection problem

Next I introduce a risk-free asset into the model. The risk-free asset has the rate of
return R f which is constant. Now there are two assets in the economy. The risky
asset has the stochastic rate of return R̃t+1. I still assume that the stochastic rate of
return R̃t+1 and labor earnings of children Ht+1 are unobservable for parents. But
parents know the distributions of R̃t+1 and Ht+1. The agent faces a portfolio selection
problem,

max
Ct ,Bt ,Ft ,Lt+1

C1−γ
t

1 − γ
+ χ E

(
L1−γ

t+1

1 − γ

)

s.t. Ct + Bt = Lt ,

Lt+1 = Ht+1 + (1 − b)
[

R̃t+1 (Bt − Ft ) + R f Ft

]
+ G,

Ft ≥ 0,

Bt ≥ 0,

where Ft is the investment in the risk-free asset.
Let the agent’s policy functions be

Ct = C (Lt ) , Bt = B (Lt ) , and Ft = [1 − ω(Lt )] Bt .

Let

lim
Lt →∞

C (Lt )

Lt
= φ̂, and lim

Lt →∞ ω(Lt ) = ω̂.

For large Lt , the first-order conditions for the agent’s problem are

C−γ
t = (1 − b)χ E

[
R̃t+1 (Lt+1)

−γ
]
, (18)

and
E
[(

R f − R̃t+1

)
(Lt+1)

−γ
]

= 0. (19)

From Eq. (19), we have

E

((
R f − R̃t+1

) [
R f (1 − ω) + R̃t+1ω

]−γ
)

= 0,
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which determines ω. From Eq. (18), we have

φ̂ = 1

1 +
[

E
(

R f (1 − ω) + R̃t+1ω
)1−γ

] 1
γ

(1 − b)
1−γ
γ χ

1
γ

.

Thus policy functions are asymptotically linear.
The individual wealth process {Lt } is generated by

Lt+1 = Ht+1 + (1 − b)
[

R̃t+1 (Bt − Ft ) + R f Ft

]
+ G

= Ht+1 + (1 − b)
(

R f [1 − ω(Lt )] + R̃t+1ω(Lt )
)

B (Lt ) + G.

Thus the results of the stationary wealth distribution in the economy with two assets
are the same as those in the economy with one risky asset except one difference. In
the economy with two assets, we use the rate of return of the investment portfolio,
R f [1 − ω(Lt )]+ R̃t+1ω(Lt ), to analyze the wealth accumulation process. A higher
volatility of R̃t+1 causes the agent to reduce the investment in the risky asset. Thus
the volatility of the return of the whole portfolio decreases. This dampens the mech-
anisms of stochastic investment returns and of inheritance which I emphasize in the
paper.28

8 Conclusion

There are two contributions of this paper.
Firstly, the explicit expression of the stationary wealth distribution in this sim-

ple model brings us new insights of how bequest motives and estate taxes influence
wealth distributions in models with idiosyncratic investment risk. This explicit expres-
sion permits me to use the decomposition technique developed by Davies (1986) to
analyze the wealth accumulation process. Then I can separate the inheritance effect
from the redistribution effect of estate taxation. I find that incorporating idiosyncratic
investment risk into the wealth accumulation process leads to the inheritance effect
which decreases the long-run wealth inequality.

Secondly, I extend results in the Benhabib et al. (2011) model with “joy of giving”
bequest motives to models with altruistic bequest motives. In my model, the impact of
estate taxes on wealth inequality does not depend on the redistribution of tax revenues
and thus does not depend on formulations of bequest motives.

28 See also Benhabib and Zhu (2008).
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A Appendix

A.1 The tail of the stationary wealth distribution

In the steady state of the aggregate economy, Eq. (5) implies

Lt+1 = dt+1Lt + ηt+1, (A.1)

where

dt+1 = R̃t+1(1 − b)

1 +
[

R̃t+1(1 − b)
] γ−1

γ
χ

− 1
γ

, (A.2)

and

ηt+1 = 1

1 +
[

R̃t+1(1 − b)
] γ−1

γ
χ

− 1
γ

(Ht+1 + G) . (A.3)

In order to investigate the stationary wealth distribution with serially correlated
{Ht } and {R̃t }, we need the following definition.

Definition 2 Let (,F) be a measurable space and let {xn} be a stationary Markov
process with transition kernel Q(x, ·) defined on it. A Markov-modulated process
(MMP) associated with {xn} is a stationary Markov process {(xn, ζn)} defined on a
product space ( × ϒ,F ⊗ �), whose transitions depend only on the position of xn .
That is, for any n ≥ 0, A ∈ F , B ∈ �,

Pr (xn ∈ A, ζn ∈ B | σ ((xi , ζi ) : i < n)) =
∫

A
Q(x, dy)�(x, y, B)|x=xn−1 ,

where �(x, y, ·) = Pr(ζ1 ∈ · | x0 = 0, x1 = y) is a kernel on ( ×  × �).

Lemma 1 Let
m(x) = log E(dt+1)

x .

Then m(x) is a convex function of x > 0.

Proof See page 158 of Loève (1977). �
Lemma 2 m(x) is a continuous function of x > 0.

Proof By Proposition 17 of Chapter 5 in Royden (1988), Lemma 1 implies Lemma
2. �
Proof of Theorem 1 Note that the process {(Ht , vt )}, where vt = (dt , ηt ), is aMarkov-
modulated process associated with {Ht }.

In order to apply Theorem 1.5 of Rointershtein (2007) to the process {Lt }, we will
verify (A1)–(A7) of Assumption 1.2 in Rointershtein (2007).

(A1) is obviously satisfied since the Borel sigma-algebra is countably generated.
By Assumption 1, {Ht } is irreducible. Thus (A2) is satisfied.
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By Assumption 2, we have

Pr (Ht+1 ≤ h | Ht = x) =
∫ h

0
f (x, y)dy =

∫ h

0
H̄ f (x, y)

1

H̄
dy,

for h ∈ (0, H̄). LetμLeb be the Lebesguemeasure.We construct a probabilitymeasure
λ on (0, H̄), such that λ(A) = 1

H̄
μLeb(A) for any Borel set A. Since f (x, y) is

uniformly bounded above on (0, H̄) × (0, H̄), H̄ f (x, y) is also uniformly bounded
above on (0, H̄) × (0, H̄) . Thus the family of functions {H̄ f (x, ·) : (0, H̄) →
[0,∞)}x∈(0,H̄) is uniformly integrable with respect to the measure λ. Then (A3) is
satisfied for m1 = 1 and the measure λ we construct.

FromAssumption 2, we know that Pr(Ht+1 ∈ (0, H̄)) = 1. And fromAssumption
4 we know that Pr(R̃t+1 ∈ [ R

¯
,R̄]) = 1. Thus from Eq. (A.3) we know that there

exists an η̄ > 0 such that Pr(ηt+1 < η̄) = 1. Thus (A4) is satisfied.
FromAssumption 4, we know that Pr(R̃t+1 ∈ [R

¯
, R̄]) = 1. Thus dt+1 is bounded,

since dt+1 is a continuous function of R̃t+1 [see Eq. (A.2)]. We also know that dt+1
is bounded away from zero since R

¯
> 0. Thus there exists an cρ > 1 such that

Pr( 1
cρ

< dt+1 < cρ) = 1. Thus (A5) is satisfied.
For x > 0, we have

lim
n→∞

1

n
log E

[
n−1∏
i=1

(di )
x

]
= log E(dt+1)

x = m(x),

since, by Assumption 3,
{

R̃t

}
is i.i.d. along generations. From Lemmas 1 and 2, we

know thatm(x) is convex and continuous. FromAssumption 5, we have E (dt+1) < 1.
Thus m(1) < 0. By Assumption 6, E(dt+1)

2 > 1. Thus m(2) > 0. Then we know
that there exists a unique μ ∈ (1, 2) such that m(μ) = 0, i.e.

E(dt+1)
μ = 1.

Thus (A6) is satisfied.
By Assumption 4, R̃t+1 has a probability density function l(·) on [R

¯
,R̄]. Thus the

distribution of log dt+1 is nonarithmetic. Thus (A7) is satisfied.
We have verified (A1)–(A7) of Assumption 1.2 in Rointershtein (2007). Applying

Theorem 1.5 of Rointershtein (2007) to the process {Lt }, we have

lim
x→∞

Pr(L∞ > x)

x−μ
= c,

with c > 0. �
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A.2 Proof of Theorem 2

Proof Let μ′ ∈ (1, 2) solves
E(d ′

t+1)
μ′ = 1.

Since dt+1 �FSD d ′
t+1 and f (d) = (d)μ

′
is an increasing function of d, applying

Theorem 1.2.8 of Müller and Stoyan (2002), we have

E(dt+1)
μ′ ≥ E(d ′

t+1)
μ′ = 1.

Thus
log E(dt+1)

μ′ ≥ 0.

By Assumption 5, we have log E(dt+1) < 0. From Lemmas 1 and 2, we know that
log E(dt+1)

x is convex and continuous in x . Thus there exists a μ > 1 such that
log E (dt+1)

μ = 0, and μ ≤ μ′. �

A.3 Proof of Proposition 2

Proof Suppose that χ > χ ′. Thus by Eq. (A.2) we know that

dt+1 = R̃t+1(1 − b)

1 +
[

R̃t+1(1 − b)
] γ−1

γ
χ

− 1
γ

> d ′
t+1 = R̃t+1(1 − b)

1 +
[

R̃t+1(1 − b)
] γ−1

γ
(χ ′)−

1
γ

.

For x ∈ R, dt+1 ≤ x implies d ′
t+1 ≤ x . Thus we have

Pr(dt+1 ≤ x) ≤ Pr(d ′
t+1 ≤ x),

for x ∈ R. Then we know that dt+1 �FSD d ′
t+1. Applying Theorem 2, we know that

the Pareto exponent μ of the wealth distribution under χ is smaller than under χ ′. �

A.4 Proof of Proposition 4

Proof By Eq. (A.2), we have

dt+1 = R̃t+1(1 − b)

1 +
[

R̃t+1(1 − b)
] γ−1

γ
χ

− 1
γ

= 1[
R̃t+1(1 − b)

]−1 +
[

R̃t+1(1 − b)
]− 1

γ
χ

− 1
γ

.

Thus dt+1 decreases with b.
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Suppose that b < b′. Thus we have dt+1 > d ′
t+1. For x ∈ R, dt+1 ≤ x implies

d ′
t+1 ≤ x . Thus we have

Pr(dt+1 ≤ x) ≤ Pr(d ′
t+1 ≤ x),

for x ∈ R. Then we know that dt+1 �FSD d ′
t+1. Applying Theorem 2, we know that

the Pareto exponent μ of the wealth distribution under b is smaller than under b′. �

A.5 Proof of Proposition 5

Proof Suppose that g < g′. Thus we have dt+1
g >

dt+1
g′ . For x ∈ R, dt+1

g ≤ x implies
dt+1

g′ ≤ x . Thus we have

Pr

(
dt+1

g
≤ x

)
≤ Pr

(
dt+1

g′ ≤ x

)
,

for x ∈ R. Then we know that dt+1
g �FSD

dt+1
g′ . Applying Theorem 2 to the process{

L̂ t

}
, we know that the Pareto exponentμ of the wealth distribution under g is smaller

than under g′. �

A.6 Serially correlated
{
R̃t

}

We introduce a stationary Markov process {xt } into the model such that the process

{(xt , ψt )}, where ψt =
(

R̃t , Ht

)
, is a Markov-modulated process associated with

{xt }. Thus the Markov process {xt } is the underlying process.
Assumption 1′. {xt } is on the measurable space (R, B), where B is the Borel sigma-
algebra.
Assumption 2′. {xt } is irreducible.
Assumption 3′. Let Q(x, ·) be the transition kernel of {xt }. There exist a probability
measure λ on (R, B), a number m1 ∈ N, and a measurable density kernel f (x, y) :
R
2 → [0,∞) such that

Qm1(x, A) =
∫

A
f (x, y)λ(dy),

and the family of functions { f (x, ·) : R → [0,∞)}x∈R is uniformly integrable with
respect to the measure λ.
Assumption 4′. Ht ∈ (0, H̄).
Assumption 5′. R̃t ∈ [R

¯
, R̄] with R

¯
> 0.

Assumption 6′. Let 
(x) = lim supn→∞ 1
n log E

[∏n−1
i=1 (di )

x
]
. There exist μ1 > 1

and μ2 > 1 such that 
(μ1) ≥ 0 and 
(μ2) < 0.
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Assumption 7′. There do not exist a constant α > 0 and a measurable function
β : R → [0, α) such that29

Pr (log(d1) ∈ β(x0) − β(x1) + αZ) = 1.

Proof of Proposition 7 The process {(xt , vt )}, where vt = (dt , ηt ), is a Markov-
modulated process associated with {xt } since the process {(xt , ψt )}, where ψt =(

R̃t , Ht

)
, is a Markov-modulated process associated with {xt }.

In order to apply Theorem 1.5 of Rointershtein (2007) to the process {Lt }, we will
verify (A1)–(A7) of Assumption 1.2 in Rointershtein (2007).

(A1) is obviously satisfied since the Borel sigma-algebra is countably generated.
By Assumptions 2′ and 3′, (A2) and (A3) are satisfied.
FromAssumption 4′, we know that Pr(Ht+1 ∈ (0, H̄)) = 1.And fromAssumption

5′ we know that Pr(R̃t+1 ∈ [ R
¯
,R̄]) = 1. Thus from Eq. (A.3) we know that there

exists an η̄ > 0 such that Pr(ηt+1 < η̄) = 1. Thus (A4) is satisfied.
FromAssumption 5′, we know that Pr(R̃t+1 ∈ [R

¯
, R̄]) = 1. Thus dt+1 is bounded,

since dt+1 is a continuous function of R̃t+1 [see Eq. (A.2)]. We also know that dt+1
is bounded away from zero since R

¯
> 0. Thus there exists an cρ > 1 such that

Pr( 1
cρ

< dt+1 < cρ) = 1. Thus (A5) is satisfied.

By Assumptions 6′ and 7′, (A6) and (A7) are satisfied.
We have verified (A1)–(A7) of Assumption 1.2 in Rointershtein (2007). By Lemma

2.3 of Rointershtein (2007) we know that, for x > 0, the following limit exists,


(x) = lim
n→∞

1

n
log E

[
n−1∏
i=1

(di )
x

]
.

We then show the following lemma.

Lemma 3 
(x) is a convex function of x > 0.

Proof Note that log E
[∏n−1

i=1 (di )
x
]

= log E
[(∏n−1

i=1 di

)x]
. Viewing

(∏n−1
i=1 di

)
as

a random variable, we know, from Lemma 1, that log E
[(∏n−1

i=1 di

)x]
is a convex

function of x > 0. Thus 1
n log E

[∏n−1
i=1 (di )

x
]
is a convex function of x > 0. Then

we know that 
(x) is a convex function of x > 0. �
Thus we have Lemma 4 as a corollary to Lemma 3.

Lemma 4 
(x) is a continuous function of x > 0.

Proof By Proposition 17 of Chapter 5 in Royden (1988), Lemma 3 implies Lemma
4. �

29
Z denotes the set of integers.
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Lemmas 3 and 4 imply that 
(x) is convex and continuous. From Assumption 6′,
we know that there exist μ1 > 1 and μ2 > 1 such that 
(μ1) ≥ 0 and 
(μ2) < 0.
Thus there exists a unique μ > 1 such that


(μ) = 0.

Applying Theorem 1.5 of Rointershtein (2007) to the process {Lt }, we have

lim
x→∞

Pr(L∞ > x)

x−μ
= c,

with c > 0. �

A.7 Proof of Proposition 8

Proof Suppose that χ > χ ′. Thus by Eq. (A.2) we know that

dt+1 = R̃t+1(1 − b)

1 +
[

R̃t+1(1 − b)
] γ−1

γ
χ

− 1
γ

> d ′
t+1 = R̃t+1(1 − b)

1 +
[

R̃t+1(1 − b)
] γ−1

γ
(χ ′)−

1
γ

.

Let


1(x) = lim
n→∞

1

n
log E

[
n−1∏
i=1

(
d ′

i

)x
]

,

for x > 0. Suppose that 
1(μ
′) = 0. Thus we have


(μ′) = lim
n→∞

1

n
log E

[
n−1∏
i=1

(di )
μ′
]

≥ lim
n→∞

1

n
log E

[
n−1∏
i=1

(
d ′

i

)μ′
]

= 0.

From Assumption 6′, we know that there exists μ2 > 1 such that 
(μ2) < 0. Then
we know that there exists a μ > 1 such that 
(μ) = 0, and μ ≤ μ′. �

A.8 Proof of Proposition 9

Proof I apply Theorem 1.8 of Mirek (2011) to prove Proposition 9 . I need to verify
Assumptions 1.6 and 1.7 of Mirek (2011).

Let ϑ =
(

R̃, H
)
and

ψϑ(L) =
{

H − (1 − b)R̃θ L + G, if L ≤ φ

d L + η, otherwise
.

Theprocess {Lt } is generated by Lt+1 = ψϑ(Lt ). Thusψϑ(L) is Lipschitz continuous.
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Verification of Assumption 1.6 of Mirek (2011). For every z > 0, let

ψϑ,z(L) = zψϑ

(
1

z
L

)
.

ψϑ,z are called dilatations of ψϑ . Let

ψ̄ϑ (L) = lim
z→0

ψϑ,z(L).

Thus we have

ψ̄ϑ (L) = lim
z→0

ψϑ,z(L) = lim
z→0

[
zψϑ

(
1

z
L

)]
= d L , for ∀L ≥ 0.

Since ψϑ(L) is piecewise linear, It is easy to find a random variable Nϑ with
bounded support such that

|ψϑ(L) − d L| ≤ Nϑ , for ∀L ≥ 0.

Assumption 1.6 of Mirek (2011) is satisfied.
Verification of Assumption 1.7 of Mirek (2011). As for Assumption 1.7 of Mirek

(2011), condition (H3) is satisfied since

dt+1 = R̃t+1(1 − b)

1 +
[

R̃t+1(1 − b)
] γ−1

γ
χ

− 1
γ

,

by Eq. (A.2).
{

R̃t

}
is i.i.d. along time and the support of R̃t is closed.

The law of log d is nonarithmetic since R̃t has a probability density function l(·) on
[R
¯
,R̄] by Assumption 3′′. Thus (H4) in Assumption 1.7 of Mirek (2011) is satisfied.
Let m(x) = log E(d)x . From Assumption 4′′, we have E (d) < 1. Thus m(1) < 0.

By Assumption 5′′, E(d)2 > 1. Thus m(2) > 0. From Lemmas 1 and 2, we know
that m(x) is convex and continuous. Thus there exists a unique μ ∈ (1, 2) such that
m(μ) = 0, i.e.

E(d)μ = 1.

We also know that E (dμ| log d|) < ∞, since d is bounded.
E
[
(Nϑ)μ

]
< ∞, since Nϑ is bounded.

Assumption 1.7 of Mirek (2011) is satisfied.
Applying Theorem 1.8 of Mirek (2011), we find that the stationary distribution of

the process {Lt }, L∞, has an asymptotic Pareto tail, i.e.

lim
x→∞

Pr(L∞ > x)

x−μ
= c,

with c > 0. �
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