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We set up a heterogeneous agent model to describe users’ use of online
payments. We obtain the coupled HJB and KFE equations, and use
the upwind algorithm (a finite difference method) to calculate online
payment times and the distribution of users’ online payment habits in
different market environments. The optimal charging policy which can
maximize the social welfare is also obtained.

I. Introduction

With the progress of science and technology, e-commerce, live streaming and other on-
line consumption forms have become a part of people’s lives. Even for offline consump-
tion, most consumers no longer carry cash, but complete transactions through online
payment methods such as Alipay and Wechat Pay. These fintech companies charge users
a fee to balance the cost of doing business or to cover bank fees. This paper constructs
a continuous time version of the heterogeneous agent model with two idiosyncratic risks
in payment habit and market environment to solve the optimal online payment frequency
and the optimal charging method to maximize the social welfare.

In recent decades, the inclusion of explicit heterogeneity in macroeconomic models
has been a key development in macroeconomics research. With the increasing availabil-
ity of high-quality micro data and the emergence of more powerful computing methods,
these heterogeneous agent models have proliferated in number and are now ubiquitous.

Heterogeneity model is highly regarded by economists for many reasons. First, it
opens the door to introduce micro data to the table in order to empirically discipline
macro theories with micro data. Second, macroeconomists usually want to analyze the
impact of a particular shock or policy on welfare, and who is the loser and who is the ben-
eficiary, so distribution considerations are usually not negligible. Third, heterogeneous
models often provide significantly different aggregate implications than do representative
agent models.

Despite the continuously increasing popularity of macroeconomic models with rich
heterogeneity, there is a lack of theoretical and analytical results on heterogeneity models
in the literature. Instead, most studies explain the implications of these theories through
purely numerical analysis. But even such computational approaches are extremely diffi-
cult to solve the models with transition dynamics or with non-differential or non-convex
properties.

* Zhu: School of International Trade and Economics, University of International Bussiness and Economics;
Wang: School of International Trade and Economics, University of International Bussiness and Economics (e-mail:
syxxwzy1@163.com)

1



2

When recasting in continuous time, heterogeneous agent models boil down to systems
of two coupled partial differential equations. The first equation is a Hamilton-Jacobi-
Bellman (HJB) equation for the optimal choices of a invidual who takes the distribution.
And the second is a Kolmogorov Forward equation (KFE or Fokker-Planck equation)
characterizing the evolution of the distribution, given optimal choices of individuals.

In this paper, we use the method in Achdou et al. (2022), combined with users’ online
payment habits and market environment, and propose a problem to solve the selection of
online payment times in continuous time based on heterogeneous agents model. The HJB
equation represents an individual’s optimal online payment usage when given a random
process of payment habits and market environment. The KFE equation represents the
evolution of the joint distribution of payment habits and duration environments. And
we use them to solve the optimal online payment frequency and the charging method to
maximize the social welfare.

The paper is organized as follows. In Section 2 contains the literature review. In Sec-
tion 3, we establish a heterogeneous agent model to describe the use of online payment
with idiosyncratic risks in payment habit and market environment. Section 4 demon-
strates the general stationary equilibrium. Section 5 show the welfare of social and the
fintech company and the optimal charging method. Section 6 illustrate our computational
algorithm. Section 7 concludes the paper. The derivation of formulas and the algorithm
is in appendix.

II. Literature Review

After the studies of Bewley (1986), Hopenhayn (1992), Huggett (1993) and Aiyagari
(1994), many economists use the incomplete market model with heterogeneous agents
for research. These incomplete market models are often called Bewley models. Achdou
(2022) recast the Aiyagari-Bewley-Huggett model of income and wealth distribution in
continuous time and develop a simple, efficient, and portable numerical algorithm for
computing a wide class of heterogeneous agent models. The algorithm is based on a
finite difference method and applies to the computation of both stationary and time-
varying equilibria.

III. Model Set

A. Household

Time is continuous, indexed by t ∈ [0,∞). There is a continuum of agents with mea-
sure 1 in the economy. Online payment habits h indicate users’ willingness to use online
payment methods. The more willing users are to use online payment methods, the greater
their online payment habits will be. When market environment x are bad, such as when
the reputation of the fintech company is damaged, users may be less likely to choose
online payment methods. Agents have standard preferences over utility flows from on-
line payments habit ht , usage times of online payment nt and market environment xt
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discounted at rate ρ ≥ 0:

E0

∫
∞

0
e−ρtu(ht ,xt ,nt)dt(1)

u(ht ,xt ,nt) = x(t)
h(t)1−γ

1− γ
−C

n(t)1+ 1
ε

1+ 1
ε

(2)

where C is the constant using cost by users. And the online payment habit evolves
accroding to:

(3) dh(t) = (n(t)−T (n(t)))dt

where n(t) is the online payment times per unit time, T (n(t)) = kn(t)+ ph(t) is the fee
charged by the fintech company according to agent’s online panyment times and habit.
k and p is determined by fintech company according to agents’ payment habits. We let
x(t) represent the market environment. Because the market environment is constantly
changing and cannot be predicted accurately, we let x(t) evolve stochastically over time
on a bounded interval [x,x] with x > x > 0, according to the stationary diffusion process:

(4) dx(t) = (a−ηx(t))dt +σdB(t)

where B(t) is a standard Brownian motion.Equation 4 is a continuous-time analogue of
a Markov process. It is also an Ornstein-Uhlenbeck (OU) process and its mean is a

η
, its

rate of mean reversion θ is η , its volatility is σ , so its variance is σ2

2θ
.

The agent’s problem:

(5) max
{n(t)}∞

t=0

E0

∫
∞

0
e−ρt

(
x(t)

h(t)1−γ

1− γ
−C

n(t)1+ 1
ε

1+ 1
ε

)
dt

where ρ > 0 is the time dicount factor, E0 is the expectation operator conditional on the
information set at time 0.
Let V (h(t),x(t)) be the value function of the household’s problem:

(6)

V (x(t),h(t)) = max
{n(t)}∞

t=0

E0

∫
∞

0
e−ρt

(
x(t)

h(t)1−γ

1− γ
−C

n(t)1+ 1
ε

1+ 1
ε

)
dt

dh(t) = [n(t)−T (n(t))]dt
dx(t) = (a−ηx(t))dt +σdB(t)

where Et is the expectation operator conditional on the information set at time t, C is the
using cost by household, and x(t) represent the market environment. We will estimate
the haibt parameters of C,γ,ε and market environment parameters of η and σ . From
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equation 6, we can derive the HJB equation:

(7) ρV (h(t),x(t)) = max
{n(t)}∞

t=0


x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

+(a−ηx)Vx(h(t),x(t))
+1

2 σ2Vxx(h(t),x(t))
+(n(t)−T (n(t)))Vh(h(t),x(t))


We use the finite difference (FD) method to solve this dynamic problem, and we have

the frequency of using online payments in figure 1. It will increase as habits rise. But the
environment have little influence on frequency of online payments.

Habit, h0 20 40 60 80 100Environment, x 0.5
1.0

1.5
2.0

2.5
n(h,x)
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5.0
7.5

10.0
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15.0
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20.0
22.5

FIGURE 1. THE POLICY FUNCTION OF ONLINE PAYMENT USAGE

B. Household’s decision

From Equation 6, we can also get the evolution of the houshold’s payment habit
{h(t)}∞

t=0 through the FD method. The result is shown in Figure 2 and the value function
is shown in Figure 3. From Figure 2, we find that when individuals are not used to online
payment or rarely use it, their habits will increase. However, when individuals enjoying
using online payment, their online payment habits will decrease, and the greater their
habits are, the rapidly they decrease. This may be caused by the fees charged by fintech
company according to individuals’ online payment habits. Meanwhile, from Figure 3,
we find that the value function has been increased when individuals start to use online
payment. And with the increase of online payment habits, the increase of value function
is not significant. Different colored lines in the both figures represent different market
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FIGURE 2. DERIVATIVE OF PAYMENT HABIT
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FIGURE 3. VALUE FUNCTION

environment.

IV. Stationary distribution of online payment

From Equation 6, we can derive the Kolmogorov foward (Fokker-Planck) equation
(KFE) in Equation 8:

(8) 0 =− ∂

∂h
µ1 f (h,x, t)− ∂

∂x
µ2 f (h,x, t)+

1
2

∂ 2

∂x2 (σ
2 f (h,x, t))

where µ1 = n(t)−T (n(t)) and µ2 = a−ηx(t). The partial differential Equation 8 char-
acterizes the evolution of the payment habits and market environment, we get the distri-
bution of payments in the economy from it, which is shown in Figure 4
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FIGURE 4. ONLINE PAYMENT HABIT DISTRIBUTION

V. Optimal Charge Method

A. Social Welfare Maximization

According to the value function and distribution function obtained before, we can
calculate social welfare.

(9)
max

∫ x

x

∫
∞

0
V (h) f (h)dhdx

s.t. D =
∫

∞

0
T (n) f (n)dn

In order to meet the constraint, we assume that after fintech company collects fees from
users, he will return the fees to society, so the market environment will continue to im-
prove, and the 4 becomes:

dx(t) = (a−ηx)dt +σdB(t)+Ddt

we use a bisection algorithm on the stationary fee D charged by the fintech company.
We begin an iteration with an initial guess D0, then keep iterating it until Dn+1 is close
enough to Dn. The results are shown in Figure 5. We can observe that when p = 0.6
and k = 0, social welfare reaches its maximum value. This means that fintech company
should not charge users based on the number of times they use online payment, but only
based on their usage habits of online payment. When k > 0, social welfare decreases
continuously with the increase of k and p.
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FIGURE 5. SOCIAL WELFARE

B. The Fintech Company Welfare Maximization

We know that the fintech company will charge a fee based to users’ online payment
times and habits, T (n) = kn+ ph. So using the distribution function of users’ online pay-
ment habits and the fee charged by fintech company, we can derive the fintech company’s
profits.

(10) max
T (n)

∫
∞

0
T (n) f (n)dn

To solve Equation 10, we use the same method as solving the problem of social welfare
maximization. The results are shown in Figure 6. We find that when p = 1 and k = 0,
the profit of fintech company reaches the maximum. In addition, the company’s welfare
decreases with the increase of k, which may be because charging users according to the
usage times of them discourages the enthusiasm of users and destroys the habit of using
online payment, thus reducing the company’s profits.

However, policies that maximize social welfare and firm welfare do not exactly coin-
cide. In this respect, we will further calibrate parameters and update results after we get
payment data from Ant Open Research.
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FIGURE 6. FINTECH COMPANY WELFARE

VI. Computation

The economy can be represented by the following system of equations which we aim
to solve numerically:

ρV (h,x) = max
{n(t)}∞

t=0

u(n)+(n−T (n))Vh +(a−ηx)Vx +
1
2

σ
2Vxx(11)

(12) 0 =− ∂

∂h
(µ1(h) f (h,x, t))− ∂

∂x
(µ2(x) f (h,x, t))+

1
2

∂ 2

∂x2 (σ
2 f (h,x, t))

(13) 1 =
∫ x

x

∫
∞

h
f (h,x)dhdx

on (0,∞)× (x,x).

A. HJB Equation

We use a finite difference method to approximate the HJB function V (h(t),x(t)) at
I × J discrete points in the space dimension (hi,x j), where i = 1, ..., I, j = 1, ...,J. We
use equispaced grids, denote by ∆h the distanse between grid points along h dimension
and ∆x along x dimension, and use the short-hand notation Vi, j ≡V (hi,x j) where i indexes
habit and j indexes environment. The derivative in the h dimension is approximated using
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an upwind method, i.e. using either a forward or a backward difference approximation:

(14)
∂h,BVi, j =

Vi, j −Vi−1, j

∆h

∂h,FVi, j =
Vi+1, j −Vi, j

∆h

Similarly, we also use an upwind method in the x-direction. For the second-order deriva-
tive, we use a central difference approximation. Hence:

(15)

∂x,BVi, j =
Vi, j −Vi−1, j

∆x

∂x,FVi, j =
Vi+1, j −Vi, j

∆x

∂xxVi, j =
Vi, j+1 −2Vi, j +Vi, j−1

(∆x)2

The finite difference approximation to equation (11) is:

ρVi, j = u(ni, j)+(ni, j −T (ni, j))∂hVi, j +(a−ηx j)∂xVi, j +
1
2

σ
2
∂xxVi, j(16)

where ∂hVi, j and ∂xVi, j are either the forward or the backward difference approximation.
There are two complications. The first question is when to use a forward and when a
backward difference approximation. It turns out that this is actually quite important for
the stability properties of the scheme. The second is that the HJB equations are highly
non-linear, and therefore so is the system of equations (16). It therefore has to be solved
using an iterative scheme (rather than simply inverting a matrix).
The approach we choose to update the value function V m

i, j,m= 1, ... is the implicit method
because it is both more efficient and more reliable:

(17)

V m+1
i, j −V m

i, j

∆
+ρV m+1

i, j =u(nm
i, j)+(nm

i, j −T (nm
i, j))∂hV m+1

i, j

+(a−ηx j)∂xV m+1
i, j +

1
2

σ
2
∂xxV m+1

i, j

where ḣm
i, j = nm

i j −T (nm
i, j) = (1− k)nm

i, j − phm
i and nm

i, j = (u′)−1((k− 1)∂hV m
i, j). The pa-

rameter ∆ is the step size of the implicit method. The main advantage of implicit scheme
is that the step size ∆ can ge arbitrarily large.

UPWIND SCHEME

As already mentioned, it is important whether and when a forward or a backward
difference approximation is used. The correct way of doing this is to use a so-called
”upwind scheme.” The idea is to use a forward difference approximation whenever the
drift of the state variable is positive and to use a backwards difference whenever it is neg-
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ative. In practice, this is done as follows: first compute the derivative of payment habit h,
ḣ, according to both the backwards and forward difference approximations ∂h,BVi, j and
∂h,FVi, j

ḣi, j,F = (1− k)(u′)−1((k−1)∂h,FVi, j)− phi

ḣi, j,B = (1− k)(u′)−1((k−1)∂h,BVi, j)− phi

where we suppress m suerscripts for notational simplicity. And we use the following
finite difference approximation to equation (11):

(18)

V m+1
i, j −V m

i, j

∆
+ρV m+1

i, j =u(nm
i, j)+∂h,FV m+1

i, j (ḣm
i, j,F)

++∂h,BV m+1
i, j (ḣm

i, j,B)
−

+∂x,FV m+1
i, j (a−ηx j)

++∂x,BV m+1
i, j (a−ηx j)

−

+
σ2

2
∂

2
x V m+1

i, j

For any number x, the notation x+ means ”the positive part of x”, i.e. x+ = max{x,0}
and analogously x− = min{x,0}.

SOLUTION

Equation 18 constitutes a system of I × J linear equations, and it can be written in
matrix notation using the following steps. Substituting the definition of the derivatives
Equations 14 and 15, Equation 18 is:

V m+1
i, j −V m

i, j

∆
+ρV m+1

i, j =u(nm
i, j)+

V m+1
i+1, j −V m+1

i, j

∆h
(ḣm

i, j,F)
++

V m+1
i, j −V m+1

i−1, j

∆h
(ḣm

i, j,B)
−

+
V m+1

i, j+1 −V m+1
i, j

∆x
(a−ηx j)

++
V m+1

i, j −V m+1
i, j−1

∆h
(a−ηx j)

−

+
σ2

2

V m+1
i, j+1 −2V m+1

i, j +V m+1
i, j−1

(∆x)2
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Collecting terms with the same subscriprs on the right-hand side:

(19)

V m+1
i, j −V m

i, j

∆
+ρV m+1

i, j =u(nm
i, j)+V m+1

i−1, jbi, j +V m+1
i, j (ci, j +υ j)+V m+1

i+1, jdi, j

+V m+1
i, j−1χ j +V m+1

i, j+1ζ j

bi, j =−
(ḣi, j,B)

−

∆h

ci, j =−
(ḣi, j,F)

+

∆h
+

(ḣi, j,B)
−

∆h

di, j =
(ḣi, j,F)

+

∆h

χ j =−(a−ηx)−

∆x
+

σ2

2(∆x)2

υ j =−(a−ηx)+

∆x
+

(a−ηx)−

∆x
− σ2

(∆x)2

ζ j =
(a−ηx)+

∆x
+

σ2

2(∆x)2

At the boundaries in the i dimension, the equations become:

V m+1
1, j −V m

1, j

∆
+ρV m+1

1, j =u(nm
1, j)+V m+1

1, j (2b1, j + c1, j +υ j)+V m+1
2, j (d1, j −b1, j)

+V m+1
1, j−1χ j +V m+1

1, j+1ζ j

V m+1
I, j −V m

I, j

∆
+ρV m+1

I, j =u(nm
I, j)+V m+1

I−1, j(bI, j −dI, j)+V m+1
I, j (cI, j +υ j +2dI, j)

+V m+1
I, j−1χ j +V m+1

I, j+1ζ j

where in the first equation, we have used that ∂h,BV1, j =
V1, j−V0, j

∆h =
V2, j−V1, j

∆h and hence
V0, j = 2V1, j −V2, j. Similarly, in the second equation, ∂h,FVI, j =

VI+1, j−VI, j
∆h =

VI, j−VI−1, j
∆h and

hence VI+1, j = 2VI, j −VI−1, j.
We use the same method at the boundaries in the j dimension, and the equations become:

V m+1
i,1 −V m

i,1

∆
+ρV m+1

i,1 =u(nm
i,1)+V m+1

i−1,1bi,1 +V m+1
i,1 (ci,1 +υ1 +2χ j)+V m+1

i+1,1di,1

+V m+1
i, j+1ζ j

V m+1
i,J −V m

i,J

∆
+ρV m+1

i,J =u(nm
i,J)+V m+1

i−1,Jbi,J +V m+1
i,J (ci,J +υJ +2ζJ)+V m+1

i+1,Jdi,J

+V m+1
i,J−1(χJ −ζJ)
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where in the first equation, we have used that ∂x,BVi,1 =
Vi,1−Vi,0

∆x =
Vi,2−Vi,1

∆x and hence
Vi,0 = 2Vi,1 −Vi,2. Similarly, in the second equation, ∂x,FVi,J =

Vi,J+1−Vi,J
∆x =

Vi,J−Vi,J−1
∆x and

hence Vi,J+1 = 2Vi,J −Vi,J−1.
Equation 19 is a system of I×J linear equations which can be written in matrix notation
as:

(20)
1
∆
(V m+1 −V m)+ρV m+1 = um +AmV m+1

where V n is a vector of length I × J with entries (V1,1, ...,VI,1,V1,2, ...,VI,2, ...,VI,J) and
Am = Ãm +C where the (I × J)× (I × J) matrices Ãm and C are:

Ãm =



c1,1 d1,1 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0

b2,1 c2,1 d2,1 0
. . . . . . . . . . . . . . . . . . . . . . . .

...

0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

. . . bI,1 cI,1 0 0
. . . . . . . . . . . . . . . . . .

...
...

. . . 0 0 c1,2 d1,2 0
. . . . . . . . . . . . . . .

...
...

. . . . . . 0 b2,2 c2,2 d2,2 0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . . . . . . . 0 c1,J d1,J 0

...
...

. . . . . . . . . . . . . . . . . . . . . 0 b2,J c2,J d2,J 0
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

0 · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 bI,J cI,J


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C =



υ1 +χ1 0 · · · · · · 0 ζ1 0 · · · · · · · · · · · · · · · 0

0 υ1 +χ1 0
. . . . . . 0 ζ1 0

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

0
. . . 0 υ1 +χ1 0

. . . . . . 0 ζ1 0
. . . . . .

...

χ2 0
. . . 0 υ2 0

. . . . . . 0 ζ2 0
. . .

...

0 χ2 0
. . . 0 υ2 0

. . . . . . 0 ζ2 0
...

... 0
. . . . . . . . . . . . . . . . . . . . . . . . 0

. . .
...

...
. . . 0 χ2 0

. . . 0 υ2 0
. . . . . . 0

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
. . . . . . . . . 0 χJ 0

. . . . . . υJ +ζJ 0
. . .

...
...

. . . . . . . . . . . . 0 χJ 0
. . . υJ +ζJ 0

. . .
...

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

0 · · · · · · · · · · · · · · · · · · 0 χJ 0 · · · 0 υJ +ζJ



B. Kolmogorov Forward Equation and Equilibrium

We now turn to the solution of Equation 12, which also have to satisfy Equation 13.
The rough idea is to discretize these as

0 =− ∂

∂h
(µ1(hi) fi, j)−

∂

∂x
(µ2(x j) fi, j)+

1
2

∂ 2

∂x2 σ
2 fi, j(21)

1 =
I

∑
i=1

J

∑
j=1

fi, j∆h∆x(22)

We can use the same method in section VI.A to solve HJB.

V m+1
i, j −V m

i, j

∆
+ρV m+1

i, j =u(nm
i, j)+V m+1

i−1, jbi, j +V m+1
i, j (ci, j +υ j)+V m+1

i+1, jdi, j

+V m+1
i, j−1χ j +V m+1

i, j+1ζ j

UPWIND SCHEME

There is again a question when to use a forward or backward approximation for the
derivatives. It turns out that the most convenient approximation of equation 21 is as
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follows:

0 =−
fi, j(ḣn

i, j,F)
+− fi−1, j(ḣn

i−1, j,F)
+

∆h
−

fi+1, j(ḣn
i+1, j,B)

−− fi, j(ḣn
i, j,B)

−

∆h

−
fi, jµ2(x j)

+− fi, j−1µ2(x j−1)
+

∆x
−

fi, j+1µ2(x j+1)
−− fi, jµ2(x j)

−

∆x

+
σ2

2
fi, j+1 −2 fi, j + fi, j−1

(∆x)2

Collecting terms, we have:

0 = fi+1, jbi+1, j + fi, j(ci, j +υ j)+ fi−1, jdi−1, j + fi, j−1χ j−1 + fi, j+1ζ j+1

bi, j =−
(ḣi, j,B)

−

∆h

ci, j =−
(ḣi, j,F)

+

∆h
+

(ḣi, j,B)
−

∆h

di, j =
(ḣi, j,F)

+

∆h

χ j =−
µ2(x j)

−

∆x
+

σ2

2(∆x)2

υ j =−
µ2(x j)

+

∆x
+

µ2(x j)
−

∆x
− σ2

(∆x)2

ζ j =
µ2(x j)

+

∆x
+

σ2

2(∆x)2

VII. Conclusion

We set up a heterogeneous agent model to describe users’ use of online payments.
We obtain the coupled HJB and KFE equations, and use the upwind algorithm (a finite
difference method) to calculate online payment times and the distribution of users’ online
payment habits in different market environments. The optimal charging policy which can
maximize the social welfare is also obtained.

However, there are also some problems that we need to improve. After obtaining
online payment data from Ant Open Research, we will calibrate the parameters and get
a more accurate charging method to maximize social welfare.
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SOLUTION

The reason this is the preferred approximation is that it can be written in matrix form
in a way that is closely related to the approximation used for the HJB equation

(1) AT f = 0

where AT is the transpose os the intensity matrix A from the HJB equation with two
diffusion processes(An from the final HJB iteration). This makes sense: Besides making
sense, this approximation is also convenient: once one hae constructed the matrix A for
solving the HJB equation using an implicit method, almost no extra work is needed.

To solve the eigenvalue problem 1 while imposing 22, the simplest procedure is as
follows. Fix fi, j = 0.1 (any other number will do as well) for an arbitrary (i, j), to then
solve the system for some f̃ and then to remormalize fi, j = f̃i, j/(∑

I
i=1 ∑

J
j=1 fi, j∆h∆x).

Fixing fi, j = 0.1 is achieved by replacing the corresponding entry of the zero vector in
equation 1 by 0.1, and the corresponding row of AT by a row of zeros everywhere except
for one on the diagonal. Without this ”dirty fix,” the matrix AT is singular and so cannot
be inverted.

DERIVATION OF HJB AND KFE

This appendix shows how to derivve the HJB equation with a diffusion process and
the Kolmogorov Forward equation (Fokker-Planck equation) with a diffusion process.

A1. Derivation of Hamilton-Jacobi-Bellman Equation

Consider the Bellman equation:

V (h(t),x(t)) = max
{n(t),h(t)}∞

t=0

E
∫

∞

t
e−ρ(s−t)u(n(s))ds

dh(t) = [n(t)−T (n(t))]dt
dx(t) = (a−ηx)dt +σdBt
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Then we have:

V (h(t),x(t))

= max
{n(t),h(t)}∞

t=0

Et

∫
∞

t
e−ρ(s−t)

(
x(t)

h(t)1−γ

1− γ
−C

n(t)1+ 1
ε

1+ 1
ε

)
ds

= max
{n(t),h(t)}∞

t=0

Et


∫ t+∆t

t e−ρ(s−t)
(

x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
ds

+e−ρ∆t ∫ ∞

t+∆t e−ρ(s−(t+∆t))
(

x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
ds



= max
{n(t),h(t)}∞

t=0

Et


∫ t+∆t

t e−ρ(s−t)
(

x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
ds

+Et+∆t

(
e−ρ∆t ∫ ∞

t+∆t e−ρ(s−(t+∆t))
(

x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
ds
)


= max
{n(t),h(t)}∞

t=0

Et


∫ t+∆t

t e−ρ(s−t)
(

x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
ds

+e−ρ∆tEt+∆t

(∫
∞

t+∆t e−ρ(s−(t+∆t))
(

x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
ds
)


= max
{n(t),h(t)}∞

t=0

Et


∫ t+∆t

t e−ρ(s−t)
(

x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
ds

+max
(

e−ρ∆tEt+∆t

(∫
∞

t+∆t e−ρ(s−(t+∆t))
(

x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
ds
))


= max
{n(t),h(t)}∞

t=0

Et


∫ t+∆t

t e−ρ(s−t)
(

x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
ds

+e−ρ∆t max
(

Et+∆t

(∫
∞

t+∆t e−ρ(s−(t+∆t))
(

x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
ds
))


= max
{n(t),h(t)}∞

t=0

Et

∫ t+∆t
t e−ρ(s−t)

(
x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
ds

+e−ρ∆tV (h(t +∆t),x(t +∆t))


= max

{n(t),h(t)}∞

t=0

Et

 (
x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
∆t +(1−ρ∆t)(

V (h(t),x(t))+Vx∆x+ 1
2Vxx(∆x)2 +Vh∆h+ 1

2Vhh(∆h)2
)


We then use Ito’s formula

= max
{n(t),h(t)}∞

t=0

Et


(

x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
∆t +(1−ρ∆t)

(V (h(t),x(t))+Vx(h(t),x(t))∆ x+ 1
2Vxx(h(t),x(t))σ2∆t

+Vh(h(t),x(t))∆h)


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Note that Et∆B = 0. Taking expectation operator, we have

V (h(t),x(t))

= max
{n(t),h(t)}∞

t=0


(

x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

)
∆t

+(1−ρ∆t)
(

V (h(t),x(t))+Vx(h(t),x(t))(a−ηx)∆t
+1

2Vxx(h(t),x(t))σ2∆t +((n(t)−T (n(t)))Vh∆t)

)


Dividing by ∆t on both sides and letting ∆t → 0, we have HJB

ρV (h(t),x(t)) = max
{n(t),h(t)}∞

t=0

 x(t)h(t)1−γ

1−γ
−C n(t)1+ 1

ε

1+ 1
ε

+(a−ηx)Vx(h(t),x(t))+ 1
2 σ2Vxx(h(t),x(t))

+(n(t)−T (n(t)))Vh(h(t),x(t))


A2. Derivation of Kolmogorov Forward Equation

We know that

dh(t) = µ1dt
dx(t) = µ2dt +σdB(t)

where µ1 = n(t)−T (n(t)) and µ2 = a−ηx(t) The derivation of KFE is as follows. For
all functions ϕ(h,x), we have

E[ϕ(h(t +∆t),x(t +∆t))] =
∫

∞

0

∫
∞

h
ϕ(h,x) f (h,x, t +∆t)dhdx

On the one hand, by Itô’s lemma, we have

dϕ(h(t),x(t)) =ϕh(h(t),x(t))dh+ϕx(h(t),x(t))dx+
1
2

ϕhh(h(t),x(t))(dh)2

+
1
2

ϕxx(h(t),x(t))(dx)2 +ϕhx(h(t),x(t))dhdx

=ϕh(h(t),x(t))µ1dt +ϕx(h(t),x(t))µ2dt

+
1
2

ϕxx(h(t),x(t))σ2dt +ϕxσdB(t)

We have∫
∞

0
∫

∞

h ϕ(h,x) f (h,x, t +∆t)dhdx−
∫

∞

0
∫

∞

h ϕ(h,x) f (h,x, t)dhdx

∆t

=
Et [ϕ(h(t +∆t),x(t +∆t))]−Et [ϕ(h(t),x(t))]

∆t

=
Et(Et [ϕ(h(t +∆t),x(t +∆t))|h(t),x(t)])−Et [ϕ(h(t),x(t))]

∆t
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=Et

(
(Et [ϕ(h(t +∆t),x(t +∆t))−ϕ(h(t),x(t))|h(t),x(t)])

∆t

)
=Et

(
∆ϕ(h(t),x(t))

∆t

)
=Et [ϕh(h(t),x(t))µ1(h(t))]+Et

[
ϕx(h(t),x(t))µ2(x(t))+

1
2

ϕxx(h(t),x(t))σ2
2

]
=
∫

∞

0

∫
∞

h
[ϕh(h,x)µ1(h(t))] f (h,x, t)dhdx

+
∫

∞

0

∫
∞

h

[
ϕx(h,x)µ2(x(t))+

1
2

ϕxx(h,x)σ2
]

f (h,x, t)dhdx

On the other hand, we have∫
∞

0
∫

∞

h ϕ(h,x) f (h,x, t +∆t)dhdx−
∫

∞

0
∫

∞

h ϕ(h,x) f (h,x, t)dhdx

∆t

=

∫
∞

0
∫

∞

h ϕ(h,x)( f (h,x, t +∆t)− f (h,x, t))dhdx

∆t

=
∫

∞

0

∫
∞

h
ϕ(h,x)

f (h,x, t +∆t)− f (h,x, t)
∆t

dhdx

=
∫

∞

0

∫
∞

h
ϕ(h,x)

∂

∂ t
f (h,x, t)dhdx

Therefore, let ϕ(h,x) = ϕ(∞,x) = 0, ϕ(h,x) = ϕ(h,x) = 0 and we have

∫
∞

0

∫
∞

h
ϕ(h,x)

∂

∂ t
f (h,x, t)dhdx

=
∫

∞

0

∫
∞

h
[ϕh(h,x)µ1(h(t))] f (h,x, t)dhdx

+
∫

∞

0

∫
∞

h

[
ϕx(h,x)µ2(x(t))+

1
2

ϕxx(h,x)σ2
]

f (h,x, t)dhdx

=−
∫

∞

0

∫
∞

h

[
ϕ(h,x)

∂

∂h
(µ1(h) f (h,x, t))

]
dhdx

−
∫

∞

0

∫
∞

h

[
ϕ(h,x)

∂

∂x
(µ2(x) f (h,x, t))

]
dhdx

+
1
2

∫
∞

0

∫
∞

h

[
ϕ(h,x)

∂ 2

∂x2 (σ
2 f (h,x, t))

]
dhdx
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Thus, we have∫
∞

0

∫
∞

h
ϕ(h,x)[

∂

∂ t
f (h,x, t)+

∂

∂h
(µ1(h) f (h,x, t))+

∂

∂x
(µ2 f (h,x, t))

− 1
2

∂ 2

∂x2 (σ
2 f (h,x, t))]dhdx = 0

Since ϕ(h,x) is arbitrary, we have

∂

∂ t
f (h,x, t)+

∂

∂h
(µ1(h) f (h,x, t))+

∂

∂x
(µ2(x) f (h,x, t))− 1

2
∂ 2

∂x2 (σ
2 f (h,x, t)) = 0

Thus, we have

∂

∂ t
f (h,x, t) =− ∂

∂h
(µ1(h) f (h,x, t))− ∂

∂x
(µ2(x) f (h,x, t))+

1
2

∂ 2

∂x2 (σ
2 f (h,x, t))


