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Abstract

This paper extends the seminal work of Mirrlees (1971) to the setting where the

distribution of people’s skills is determined by the accumulation of human capital as

well as innate ability via the luck of the draw. We utilize the Kolmogorov forward

equation to analytically derive a closed-form solution for the stationary skill distribution

and address (i) how the imposition of an income tax schedule shapes the distribution

of skills, (ii) how the local perturbation of the income tax schedule (tax reform) alters

skill distribution and government revenue, (iii) how the endogeneity of skill distribution

modifies the optimal tax formula derived by Diamond (1998) and Saez (2001) and the

asymptotic optimal marginal tax rate.
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1 Introduction

Given a distribution of people’s skills (earnings abilities), optimal taxation studies how peo-

ple’s earnings should be taxed via the design of an income tax schedule. This approach is

standard in the optimal taxation literature since the seminal work of Mirrlees (1971); see,

for example, Diamond (1998), Saez (2000), Scheuer and Werning (2017), and Sachs, Tsyvin-

sky and Werquin (2020). Our paper turns the approach upside down: given an income tax

schedule, we study how the distribution of people’s skills is determined by the accumulation

of human capital as well as innate ability via the luck of the draw. We utilize the Kolmogorov

forward equation (also known as Fokker-Planck equation) to analytically derive a closed-form

solution for the stationary skill distribution and address (i) how the imposition of an income

tax schedule shapes the distribution of skills, (ii) how the local perturbation of the income

tax schedule (tax reform) alters skill distribution and government revenue, (iii) how the en-

dogeneity of skill distribution modifies the optimal tax formula derived by Diamond (1998)

and Saez (2001) and the asymptotic optimal marginal tax rate.

Our study qualitatively differs from the work of Stiglitz (1982) and subsequent papers such

as Rothschild and Scheuer (2013), Ales, Kurnaz and Sleet (2015), and Sachs, Tsyvinsky and

Werquin (2020). These papers address optimal taxation in the tradition of Mirrlees (1971) by

assuming an exogenous distribution of people’s skills but extend it to allow for endogenous

wages, in that different skills are not perfectly substitutable so that they earn different wage

rates in general equilibrium (just like labor and capital are different factors of production so

as to earn different rates of return in the neoclassical production economy). Our paper sticks

to the original setup of Mirrlees (1971), in which different skills are perfectly substitutable in

terms of effective units, namely, an individual of skill n having a marginal product equal to

n.

Since optimal conditions derived yield few clear-cut analytical results, considerable efforts

of the optimal taxation literature starting with Mirrlees (1971) have gone into simulations to
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quantitatively explore the shape of optimal tax schedules.1 Nevertheless, consensus on this

important issue seems to remain elusive. Working with quasi-linear preferences in consump-

tion, Diamond (1998) showed that if people’s skills are Pareto-distributed and the government

has a redistributive taste, optimal marginal tax rates rise with income above the modal skill

level. However, in the same paper, he also provided a condition on the skill distribution for

yielding an opposite result that optimal marginal tax rates decrease with income above some

critical skill level. Utilizing the same framework as Diamond (1998), Li et al. (2013) demon-

strated that, depending on the skill distribution assumed, the schedule of optimal marginal

tax rates can be almost anything: strictly increasing, strictly decreasing, U-shaped, inverse

U-shaped, W-shaped, or M-shaped. Working with quai-linear preferences in labor rather than

consumption, Myles (2000) reached an analogous result: except for the zero rate on the high-

est skilled agent, any qualitative structure of optimal marginal tax rates can be supported

by some skill distribution. The findings of these papers strongly suggest the critical role of

the skill distribution in shaping the optimal income tax schedue. A question naturally arises:

what is the “right”skill distribution? One route to answering the question is to discipline the

unobservable skill distribution by observable empirical data. An important contribution of

Saez (2001) is to back out the unobservable distribution of skills such that, given the actual

taxes imposed, the resulting earnings distribution from the model economy replicates the em-

pirical earnings distribution observed in the real world. Subsequent works elaborating on Saez

(2001) include Mankiw, Weinzierl and Yagan (2009), Heathcote, Storesletten and Violante

(2017), Rothschild and Scheuer (2013), and Chang and Park (2020). Our paper is comple-

mentary to this line of the literature, in that we analytically expose how the distribution of

skills is shaped by economic forces and taxation.

Rothschild and Scheuer (2013) considered a model in which agents have a two-dimensional

exogenous skill type. Although the same skill type is perfectly substitutable in terms of

1See Tuomala (1990) for a survey of earlier simulation results.
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effective units as in Mirrlees (1971), different skill types are not (just like labor (resp. capital)

supplied by different agents is perfectly substitutable, but labor and capital are not).

For the first how, we focus on two popular income tax schemes in the literature: (i) the

linear income tax, and (ii) the constant rate of progressivity (CRP) tax.

For the second how, we generalize the results in Saez (2001), in which the distribution of

people’s skills is exogenously rather than endogenously specified.

For the third how, we address how the celebrated formula with regard to optimal marginal

tax rates derived by Diamond (1998) and Saez (2001) should be modified. This formula is

exposed in detail in Salanie (2011) and Brewer, Saez and Shephard (2010). We extend the

formula from the setting of exogenous skill distributions to that of endogenous skill distribu-

tions.

Related literature

The literature on optimal taxation is vast. Here we focus on a limited subset of the studies

in the tradition of the Mirrlees (1971) approach that are most relevant to our paper.

Our paper is closely related to the work of Piketty (1997), Saez (2001), Golosov, Tsyvinsky

and Werquin (2014), Sachs, Tsyvinsky and Werquin (2020), and Chang and Park (2020).

These papers all use the variational approach to study the tax incidence of arbitrary local

perturbations of an initial, potentially suboptimal, tax schedule and obtain the optimal tax

schedule by imposing the condition that there exist no perturbations that can increase social

welfare. In particular, Sachs, Tsyvinsky and Werquin (2020) considered endogenous wages

in general equilibrium, and Chang and Park (2020) incorporated the presence of private

insurance. We adopt the same approach. Our contribution to the literature is to employ

the Fokker-Planck equation (the Kolmogorov forward equation) to obtain an endogenously

determined stationary skill distribution that depends on the tax schedule and then utilize the

solution to gain new insights into the issues of tax incidence and optimal taxation.
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Farhi and Werning (2013) and Golosov, Troshkin and Tsyvinski (2016) studied optimal

labor taxation over the life cycle within the framework of New Dynamic Public Finance

(NDPF).2 As in our paper, people’s skills evolve stochastically over time in their papers.

However, their skill evolution is exogenously specified and independent of economic forces.

Stantcheva (2017) and Kapička and Neira (2019) studied the evolution of skills over the life

cycle through the accumulation of risky human capital in the framework of NDPF. Their

focus is on the joint determination of optimal tax and human capital policies over the life

cycle. By contrast, our focus is not on dynamics but on stationary state. We utilize the Kol-

mogorov forward equation to derive endogenously-determined stationary skill distributions.

Our approach qualitatively differs from the one adopted in NDPF.

Abbott, Gallipoli, Meghir and Violante (2019) studied the equilibrium effects of college

financial aid policies using an overlapping-generations life cycle model. Holter, Krueger and

Stepanchuk (2019) stuided how tax progressivity and household heterogeneity affect Laffer

curves by developing a large scale overlapping generations with endogenous accumulation of

human capital through labor market experience.

Heathcote, Storesletten and Violante (2017) considered a model in which individuals differ

in their cost of acquiring skill. This way of determining people’s skills fundamentally differs

from ours. Importantly, they departs from the Mirrlees approach, in that the tax scheme in

their model is exogenously specified a priori. Heathcote and Tsujiyama (2019)

Badel, Huggett and Luo (2020) showed that the revenue maximizing top tax rate is ap-

proximately 49% in their quantitative human capital model. This finding is significantly lower

than an established view that the revenue maximising top tax rate for the US is approximately

73%. The endogenous response of top earners’human capital to changes in the top tax rate

is key to their result.

Following the seminal work of Stiglitz (1982), several papers inlcuding Rothschild and

2For reviews on NDPF, see Golosov, Tsyvinski, and Werning (2006) and Kocherlakota (2010).
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Scheuer (2013), Ales, Kurnaz and Sleet (2015), and Sachs, Tsyvinsky and Werquin (2020)

have considered imperfect substitution between different types of labor in production and

allowed the endogenous determination of wages. To focus on the distribution of people’s skill

through human capital accumulation, we abstract from this line of extension.

Some papers have introduced additional elements to extend the classical tax formula de-

rived by Diamond (1998) and Saez (2001). Sachs, Tsyvinsky andWerquin (2020) incorporated

the impact of the general equilibrium effects with endogenous wages, which are deteremined

by the assignment of skills to tasks. Chang and Park (2020) incorporated private insurance

and highlighted the interaction between private and public insurance. This paper comple-

ments these studies by endogenizing the distribution of people’s skill through human capital

accumulation.

2 Basic Model

We consider the simplest possible model to extend the framework of Mirrlees (1971) to incor-

porate the accumulation of human capital.

There are a continuum of agents in the economy. Each agent lives for one period; at the

end of the period, agents give birth to their children and die. Each agent is assumed to give

birth to one child and thus the populaiton size of the economy remains unchanged over time.

Agents in any time period are heterogeneous, in that they are endowed with different stocks

of human capital.

Given ns (human capital), the agent of generation s faces the following problem:

max
cs,es,ls

U(cs, es, ls) = u(cs, es)− v(ls)

subject to

cs + es = ys ≡ nsls − T (nsls), (1-1)
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lnns+1 = es + lnns + θs+1, (1-2)

where cs and es denote, respectively, consumption and education expenditure; ls is the agent’s

labor supply, ys disposable income, T (.) an income tax schedule imposed on earnings nsls,

and θs+1 the innate ability of the agent’s child. It is assumed that v : R+ → R+ is twice

continuously differentiable, strictly increasing, and strictly convex; T : R+ → R is twice

continuously differentiable. We specify the functional form for u(cs, es) below.

The education expenditure es directly enters into the utility function u(·) because it rep-

resents a kind of bequest as in Glomm and Ravikumar (1992). The budget constraint (1-1)

shows that the sum of consumption and education expenditure, cs + es, have to come out

of disposable income, ys, implying the absence of a credit market to finance human capital

investment. Benabou (2002) justified this absence by means of that children cannot be held

responsible for the debts incurred by their parents.

The motion (1-2) characterizes the process of human capital accumulation across consec-

utive generations. Similar to Benabou (2002), a child’s human capital ns+1 is determined

by three factors: her own innate ability θs+1, parental education expenditure es, and the

quality of the home or neighborhood environment as captured by parental human capital ns.

Following Benabou (2002), we assume that the child’s innate ability θt+1 is independent and

identically distributed (i.i.d.) with θs+1 ∼ N(0, σ2). This risk represents the luck of the draw

in the accumulation of human capital.

Timing for the motion (1-2) is as follows:

1. θs+1 is realized and the parent observes lnns + θs+1.

2. After observing lnns + θs+1, the parent spends education expenditure es and consumes

cs with cs + es = ys.

3. With the education expenditure es, the child’s log skill lnns+1 is determined according

to (1-2).
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In the absence of the agent’s decision on es, the motion (1-2) is simply a random walk in

lnns with no drift. In the presence of the agent’s decision on es (after θs+1 is realized), the

motion (1-2) is a random walk in lnns with drift es.

It is assumed that u(.) takes the CES form:

u(cs, es) =

[
(1− β)

(
cs

1− β

)φ−1
φ

+ β

(
es
β

)φ−1
φ

] φ
φ−1

,

where β is a parameter capturing the agent’s tastes for bequest in the form of eduction

expenditure. Sovling for the agent’s problem with respect to cs and es gives

cs = (1− β)ys,

es = βys.

Substituting the derived es into the motion (1-2) gives the human captial accumulation

process:

lnns+1 = βys + lnns + θs+1. (1)

We also obtain

u(cs, es) = ys,

which implies that the agent’s labor supply ls solves

max
ls

ys − v(ls),

which yields the first-order condition

v′(l(ns)) = ns [1− T ′(nsl(ns))] . (2)

This completes the description of the basic model.
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3 Endogeneity of skill distributions

On the basis of the human capital accumulation process (1), this section is to derive an

endogeneously-determined skill distribution. We are particularly interested in how the impo-

sition of the income tax schedule T (.) shapes the distribution of skills.

As ∆s→ 0, the motion (1) gives3

d lnn(s) = βy(n(s))ds+ σdB(s), (3)

where the process {B(s) : s ≥ 0} is a standard Brownian motion. Compared to the Brownian

motion specified by Farhi and Werning (2013, Eq. (16)) for people’s skills, a key difference is

that while their evolution is exogenously specified, ours is endogenously determined through

the effect of y(n(s)) on d lnn(s).

Let the cross-sectional pdf of n(s) at time s be denoted by f(n, s). Given the motion (3),

applying the Kolmogorov forward (KF) equation yields4

∂f(n, s)

∂s
=

1

2

∂2

∂n2
[
σ2n2f(n, s)

]
− ∂

∂n
[βy(n)nf(n, s)] .

3See section 16.4 of Martin, Hurn and Harris (2013).
4For the applications of the KF equation, see, for example, Benhabib, Bisin and Zhu (2016), Jones and

Kim (2018), Nuno and Moll (2018), and Achdou, Han, Lasry, Lions, and Moll (2020).

.
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In stationary state,
∂f(n, s)

∂s
= 0.

Thus, a stationary f(n, s), denoted by f(n), satisfies the following differential equation:

1

2

d2

dn2
[
σ2n2f(n)

]
− d

dn
[βy(n)nf(n)] = 0.

Integrating the above equation gives

1

2

d

dn

[
σ2n2f(n)

]
= [βy(n)nf(n)] + C, (4)

where C denotes an arbitrary constant. Following Achdou, Han, Lasry, Lions, and Moll (2022,

proof of Proposition 10), we choose C = 0 as an implicit boundary condition and later we

will verify that the solution for f(n) does satisfy this condition.

With C = 0, we have from (4)

f ′(n)

f(n)
=

2

σ2
βy(n)

n
− 2

n
, (5)

which leads to ∫ n

1

f ′(ñ)

f(ñ)
dñ =

2β

σ2

∫ n

1

y(ñ)

ñ
dñ− 2

∫ n

1

1

ñ
dñ.

Solving for f(n) yields (see Appendix 9.1):

Theorem 1 Under human capital accumulation process (1), the stationary pdf of skills, f(n),

satisfies

f(n) = f(1)n−2 exp

(
2β

σ2

∫ n

1

y(ñ)

ñ
dñ

)
, n ≥ 0, 5

where the constant f(1) is determined by
∫∞
0
f(n)dn = 1.

5If n ∈ [0, 1],

f(n) = f(1)n−2 exp

{
2

σ2

∫ n

1

βy(ñ)

ñ
dñ

}
= f(1)n−2 exp

{
−2
σ2

∫ 1

n

βy(ñ)

ñ
dñ

}
.

.
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Remark 1 Given y(n) = nl(n)− T (nl(n)), it is clear that f(n) in Theorem 1 depends upon

the income tax scheme T (.).

Remark 2 We have limn→0 f(n) = 0 ?? Thus, the size of people with n = 0 is a zero

measure in stationay state. Those with n = 0 in the real world are not explicable with our

model of human capital accumulation.

If β = 0, then es = 0. The human capital accumulation process (1) would reduce to

lnns+1 = lnns + θs+1, (6)

and hence f(n) = f(1)n−2, which is a Pareto distribution. The pdf f(n) in Theroem 1

is a modified Pareto distribution, in that it is embedded in human efforts via education

expenditures to modify the random force represented by (6).

Tax equilibrium. Let E ∈ R+ be a fixed public spending and z(n) ≡ nl(n) (pre-tax

income). GivenE, a tax equilibrium is a tax schedule T (.), an allocation {c(n), e(n), l(n)}, and

a skill distribution f(n) such that (i) c(n) = (1−β)y(n), e(n) = βy(n) and equation (2) holds,

(ii) E =
∫∞
0
T (nl(n))f(n)dn (the government budget balanced), and (iii)

∫∞
0
z(n)f(n)dn =

E +
∫∞
0

[c(n) + e(n)]f(n)dn (the good market clearing condition). Given y(n) = c(n) + e(n),

we have that (iii) implies (ii), and that (ii) implies (iii).

3.1 Two parametric tax schemes

The stationary pdf f(n) in Theorem 1 depends upon the income tax scheme T (.). To be more

concrete about the dependence, we consider two popular parametric tax schemes for T (.) in

the literature: affi ne and constant rate of progressivity.

3.1.1 Affi ne tax scheme

Recall z(n) = nl(n). The affi ne tax scheme is given by T (z) = τz − m, where τ is the

constant marginal tax rate and m is the lump-sum transfer. Browning and Johnson (1984)
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argued that only the net effect of taxes and transfers is crucial for redistribution, and they

provided evidence in support of the hypothesis that an affi ne income tax can have distrib-

utional implications similar to those resulting from the actual tax plus transfer system. By

adapting a figure in Heathcote, Storesletten and Violante (2017), Bhandari, Evans, Golosov

and Sargent (2017) showed that an affi ne tax scheme can approximate actual tax and transfer

programs of the U.S. economy rather good.

With skill inequality across agents and the availability of the lump-sum transfer m, Wern-

ing (2007) noted that distributional concerns play a key role in determining the marginal

tax rate τ of the affi ne tax scheme, since (p. 927) “a positive tax rate ensures that more

productive, richer workers bear a heavier tax burden and alleviate that of less productive,

poorer workers.”

With the imposition of the affi ne tax, we have

y(n) = z(n)− T (z(n)) = (1− τ)z(n) +m,

which leads to
βy(n)

n
=
β[(1− τ)z(n) +m]

n
.

3.1.2 CRP (constant rate of progressivity) tax scheme

As in STW, we define the local rate of progressivity of the tax schedule T at income level z

as (minus) the elasticity of the retention rate 1− T ′(z) with respect to income z as

p(z) ≡ −∂ ln(1− T ′(z))

∂ ln z
=

zT ′′(z)

1− T ′(z)
.

The CRP tax scheme is defined by p(z) = p for all z with T (z) = z − λ
1−pz

1−p, p < 1;

see Benabou (2002), Heathcote, Storesletten and Violante (2017), and Sachs, Tsyvinsky and

Werquin (2020). This tax scheme is proportional, progessive, and regressive, respectively, if

p = 0, p > 0, and p < 0. Heathcote, Storesletten and Violante (2017) showed that the CRP
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tax scheme approximates the actual tax and transfer system of the U.S. economy pretty well.

According to their estimation, p = 0.181 for the U.S. economy.

Note that while z(n) = 0 implies T (z(n)) = 0 in the CRP tax scheme, it implies T (z(n)) =

−m in the affi ne tax scheme. Thus, the CRP tax scheme is not a generalization of the affi ne

tax scheme.

With the imposition of the CRP tax, we have

y(n) = z(n)− T (z(n)) =
λ

1− pz(n)1−p,

which leads to
βy(n)

n
=

βλ

1− p
z(n)1−p

n
.

3.1.3 Numerical results

Given that f(n) in Theorem 1 depends upon the income tax scheme T (.), we would like to

know how the imposition of a specific tax scheme shapes f(n). We conduct the numerical

analysis to address it.

Define

κ(n) ≡ v′(l(n))

l(n)v′′(l(n))
,

which is the elasticity of labor supply l(n) with respect to r(n) ≡ 1 − T ′(z(n)) (i.e., the

retention rate of agent n) as T ′(z(n)) = T ′ for all z(n).6 To conduct the numerical analysis,

we assume a commonly-used functional form for v(l):

Assumption 1

v(l) =
l1+

1
κ

1 + 1
κ

, 1/κ > 0.

6Using the FOC (2), v′(l(n)) = n [1− T ′(nl(n))] ≡ w(n), we have

∂l(n)

∂w(n)

w(n)

l(n)
=
∂l(n)

∂r(n)

r(n)

l(n)
=

v′(l(n))

l(n)v′′(l(n))
= κ(n).
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Under Assumption 1, κ(n) = κ for all n. This is the case where Diamond (1998, Proposi-

tions 1-3) focused on when addressing the shape of the optimal tax schedule.

If T (z(n)) = τz(n)−m (affi ne), the FOC (2) under Assumption 1 gives

l(n) = [n(1− τ)]κ, (7)

which leads to

βy(n)

n
=
β[(n(1− τ))κ+1 +m]

n

=
β[nκ+1

(
(1− τ)κ+1 + m

nκ+1

)
]

n

=
βn(κ+1)

(
(1− τ)κ+1 + m

nκ+1

)
n

.

βy(n)

n
=
βn(κ+1)

(
(1− τ)κ+1 + m

nκ+1

)
n

. (8)

If T (z(n)) = z(n)− λz(n)1−p (CRP), the FOC (2) under Assumption 1 gives

l(n) = λ
κ

1+pκn
κ(1−p)
1+pκ , (9)

which leads to
η(n)

n
=

β

1− pλ
[1+

κ(1−p)
1+pκ

]n(1−p)[1+
κ(1−p)
1+pκ

]−1. (10)

We numerically calculate the following endogenous f(n): τ = 0 (no taxes), low τ and high

τ in the case of affi ne; p = 0 (proportional), p > 0 (progressive), and p < 0 (regressive) in the

csase of CRP. In the calculation of both affi ne and CRP, we impose the balanced government

budget constraint:

m+ E = τ

∫ ∞
0

z(n)f(n)dn (affi ne),

E =

∫ ∞
0

[
z(n)− λz(n)1−p

]
f(n)dn (CRP).
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3.2 Earnings distributions

Recall z(n) = nl(n). Let fZ(z) denote the pdf of z. While z (earnings) is empirically

observable, n (earnings ability) is not. As such, it is often useful to express results in terms of

fZ(z). In fact, the elementary tax refrom we focus on later is to raise the marginal tax rate

at some specific earnings level z∗. Below we derive fZ(z) from f(n).

It is known that fZ(z) and f(n) are related through fZ(z)z′ = f(n); see Saez (2001, p.

215). Thus, we have

f(n)dn = fZ(z)z′(n)dn = fZ(z)dz.

We impose the following assmumption to regulate the relationship between n and z:

Assumption 2 The (strong) Spence-Mirrlees single crossing property is satisifed so that z(n)

is strictly increasing in n, i.e., z′(n) > 0.

The Spence-Mirrlees single crossing property, a standard assumption imposed in the op-

timal taxation literature, ensures that z(n) is increasing in n. We impose a strong form, in

that z(n) is required to be strictly increasing in n. It is known that z′(n) ≥ 0 constitutes the

second-order condition for agents’incentive compatibility in the optimal taxation literature;

see Salanie (2011, chapter 4) for details. However, to abstract from bunching associated with

z′(n) = 0, the assumption that z′(n) > 0 is often imposed explicitly or implicitly in theoretic

analyses; see, for example, Diamond (1998), Ales, Kurnaz and Sleet (2015) and Scheuer and

Werning (2017). Although the strong form of the Spence-Mirrlees single crossing property

is not necessary for all of our results, it greatly facilitates our analysis. In our numerical

simulations, we check if Assumption 2 does hold.

In the proof of Lemma 1 in the Appendix, we derive (see Eq. (17)):

z′(n) = l(n)
1 + κ(n)

1 + p(z(n))κ(n)
.

Given κ(n) = v′(l(n))
l(n)v′′(l(n)) so that κ(n) ≥ 0 for all n in our setting, a suffi cient condition to ensure

z′(n) > 0 with l(n) > 0 is that p(z(n))κ(n) > −1 for all n. Sachs, Tsyvinsky and Werquin

15



(2020) imposed this assumption, noting that it ensures that the second-order condition of the

individual problem is satisfied.7 From now on, we impose Assumption 2 implicitly whenever

it involves the function n = n(z).

Let n = n1 solve

n [1− T ′(z(n))] = v′(1).

Thus, we have l(n1) = 1, and z1 = z(n1) = n1l(n1) = n1.
8 We obtain:

Lemma 1

fZ(z) = f(n(z))
1 + p(z)κ(z)

1 + κ(z)

1

l(z)
, z ≥ 0,

where

l(z) = exp

{∫ z

z1

[1− p(z̃)]κ(z̃)

z̃ [1 + κ(z̃)]
dz̃

}
.

Lemma 1 implies

n(z) =
z

l(z)
= z exp

{
−
∫ z

z1

[1− p(z̃)]κ(z̃)

z̃ [1 + κ(z̃)]
dz̃

}
, z ≥ 0.

If κ(z) = κ and p(z) = p for all z, then

n(z) =
z

l(z)
= z

(1−p)κ
1+κ

1 z
1+pκ
1+κ , z ≥ 0.

Thus, we have n′(z) > 0 as long as pk > −1.

Using the above lemma and imposing Assumption 1, in what follows we derive fZ(z) for

the affi ne and the CRP tax scheme, respectively.

7See Assumption 1 in the supplement to their paper.

8We assume that p(z) < 1 for all z ≥ 0, which implies
d
dn {n [1− T

′(z(n))]} > 0. This guarantees the existence of n1 ≥ 0.
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3.2.1 Affi ne tax scheme

If the tax scheme is affi ne, we have p(z) = 0 for all z. Under Assumption 1, we have κ(z) = κ

for all z. According to (7), we obtain

n(z) = z
1

κ+1 (1− τ)
−κ
κ+1 ; z1 = (1− τ)−1.

Thus, Lemma 1 leads to

fZ(z) = f(n(z))
1

1 + κ
exp

{
− κ

1 + κ

∫ z

z1

1

z̃
dz̃

}
= f(n(z))

1

1 + κ
(
z

z1
)−

κ
1+κ

=
f(1)

1 + κ
(1− τ)1+

2κ
κ+1 z

−2−κ
κ+1 exp

(
2

σ2

∫ z

z(1)

βy(n(z̃))

n(z̃)z̃′
dz̃

)
(using Theorem)

=
f(1)

1 + κ
(1− τ)1+

2κ
κ+1 z−1−

1
κ+1 exp

(
2

σ2

∫ z

z(1)

βy(n(z̃))

z̃(1 + κ)
dz̃

)
, (using Eq.(17)).

3.2.2 CRP tax scheme

If the tax scheme is CRP, we have p(z) = p for all z. Under Assumption 1, we have κ(z) = κ

for all z. According to (9), we obtain

n(z) = [λ(1− p)]
−κ
1+κ z

1+pκ
1+κ ; z1 = [λ(1− p)]

−κ
(1−p)κ .

Thus, Lemma 1 leads to

fZ(z) = f(n(z))
1 + pκ

1 + κ
exp

{
−(1 + p)κ

1 + κ

∫ z

z1

1

z̃
dz̃

}
= f(n(z))

1 + pκ

1 + κ
(
z

z1
)−

(1+p)κ
1+κ

= f(1)
1 + pκ

1 + κ
[λ(1− p)]

2κ
1+κ
− κ
(1−p)κ

(1+p)κ
1+κ z−2

1+pκ
1+κ
− (1+p)κ

1+κ exp

(
2

σ2

∫ z

z(1)

βy(n(z̃))

n(z̃)z̃′
dz̃

)
(using Theorem)

= f(1)
1 + pκ

1 + κ
[λ(1− p)]

κ
1+κ

[2− 1+p
1−p ]z−

2+k+3pk
1+κ exp

(
2

σ2

∫ z

z(1)

βy(n(z̃))

z̃ 1+κ
1+pκ

dz̃

)
, (using Eq.(17)).
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4 Incidence of tax reforms

Adopting the variational approach as in the work of Piketty (1997), Saez (2001), Golosov,

Tsyvinsky and Werquin (2014), Sachs, Tsyvinsky and Werquin (2020), and Chang and Park

(2020), this section considers an initial, potentially suboptimal, tax schedule T (.) and de-

rives the tax incidence of arbitrary local perturbations of this tax schedule (“tax reforms”).

Although tax incidence belongs to a positive analysis, its derivation will pave the way for deliv-

ering the characterization of the optimal tax schedule. Our analysis follows Sachs, Tsyvinsky

and Werquin (2020) (STW hereafter) closely. As noted in the Introduction, a major difference

between their work and our work is that while they address endogenous wages, we address

endogenous skill distributions.

Consider an arbitrary reform of the initial tax schedule T (.), which can be represented by

T (.)+bT̂ (.), where T̂ (.) is a continuously differentiable function onR+ and b ∈ R parameterizes

the size of the reform. We derive the first-order effect of this perturbation on individual

utility, labor supply, and skill distribution in this section and on government revenue in the

next section. As exposed in STW, this first-order effect can be formally represented by the

Gateaux derivative in the direction of T̂ (.):

x̂(n) ≡ lim
b→0

1

b
[x(n;T + bT̂ )− x(n;T )],

where x represents a variable and x̂(n) denotes the change in x(n;T ) in response to the tax

reform T̂ . The Gateaux derivative implies approximately (in the sense of the first-order effect

with a small b):

x(n;T + bT̂ ) = x(n;T ) + bx̂(n). (11)

For convenience, we often express x(n;T ) simply as x(n).

4.1 Effects on individual utility and labor supply

Let U(n) denote the utility attained by type-n agents. We have:
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Proposition 1 The effect of a tax reform T̂ of the initial tax schedule T on individual utility,

Û(n), and individual labor supply, l̂(n), satisfies

Û(n) = −T̂ (z(n)),

l̂(n)

l(n)
= −ε(n)

T̂ ′(z(n))

1− T ′(z(n))
,

where

ε(n) ≡ ∂ ln l(n)

∂ ln(1− T ′(z(n)))
=

κ(n)

1 + p(z(n))κ(n)
.

The first result of the proposition is the same as Eq. (14) derived by STW if we ignore

the part that is related to the endogenous wages in their derivation. It shows that the tax

reform T̂ reduces U(n) exactly by T̂ (z(n)). Kelven (2020, p. 6) succinctly summarized this

well-known result: “the utility effect of any arbitrary, small reform equals the mechanical

revenue effect.”(italics original)

The second result of the proposition is the same as Eq. (9) derived by STW if we ignore

the part that is related to the endogenous wages in their derivation. As explained in STW, the

tax reform causes a percentage change in the retention rate r̂(z)
r(z)

= − T̂ ′(z(n))
1−T ′(z(n)) , which induces

a percentage change in labor supply l̂(n)
l(n)

equal to ε(n) r̂(z)
r(z)
.

4.2 Effects on skill distribution

Applying (11) gives

f(n;T + bT̂ ) = f(n) + bf̂(n).

We obtain:

Proposition 2 The effect of a tax reform T̂ of the initial tax schedule T on skill distribution,

f̂(n), satisfies

f̂(n)

f(n)
=
f̂(1)

f(1)
+

2β

σ2

[∫ n

1

1

ñ

(
[1− T ′(z(ñ)]z(ñ)

l̂(ñ)

l(ñ)
− T̂ (z(ñ))

)
dñ

]
, n ≥ 0,
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where f̂(1)
f(1)

is determined by
∫∞
0

f̂(n)
f(n)

f(n)dn = 0.

Theorem 1 tells us that the stationary pdf of skills, f(n), depends upon the after-tax

income y(n) = z(n) − T (z(n)) and hence on the tax scheme T (.). The above result shows

that the effect of the tax reform on f̂(n)
f(n)

is via two channels: (i) the tax reform itself, T̂ (.),

and (ii) the induced effect through l̂(n)
l(n)
. This result is absent in STW, since the distribution

of their agent types is exogenously given and thereby f̂(n)
f(n)

= 0.

5 Effects on government revenue

Government revenue is given by

<(T ) =

∫ ∞
0

T (z(n))f(n)dn,

and hence

<(T + bT̂ ) =

∫ ∞
0

[
T (z(n;T + bT̂ )) + bT̂ (z(n;T + bT̂ ))

]
f(n;T + bT̂ )dn.

We show in the proof of Proposition 3:

<̂(T̂ ) ≡ lim
b→0

1

b
[<(T + bT̂ )−<(T )]

=

∫ ∞
0

T̂ (z(n))f(n)dn+

∫ ∞
0

T ′(z(n))
l̂(n)

l(n)
z(n)f(n)dn+

∫ ∞
0

T (z(n))
f̂(n)

f(n)
f(n)dn,

where the first term of <̂(T̂ ) represents the mechanical effect of the tax reform, the second

term the behavioral response due to changes in l(n), and the third term the impact due to

changes in f(n). This result is the same as Eq. (15) derived by STW if (i) letting f̂(n) ≡ 0 in

our derived <̂(T̂ ) and (ii) ignoring the part that is related to the endogenous wages in their

derivation.
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5.1 Elementary tax reform

Let FZ(z) denote the cdf of z. As in STW, we focus on the elementary tax reform:

T̂ ′(z; z∗) =
1

1− FZ(z∗)
δ(z − z∗),

where the marginal tax rates are perturbed by the Dirac delta function δ(.) at z∗. The

elementary tax reform consists of raising the marginal tax rate by 1
1−FZ(z∗) at only one earnings

level z∗, implying that agents with earnings no less than z∗ all increase their tax payment by

a constant amount 1
1−FZ(z∗) , that is,

T̂ (z; z∗) =
1

1− FZ(z∗)
I{z≥z∗}, where I{z≥z∗} =

 1 if z ≥ z∗

0 if z < z∗
.

The focus on the elementary tax reform is without loss of generality, since any other tax

reforms can be expressed as a weighted sum of elementary tax reforms.9 We use notation

<̂(z∗) to replace <̂(T̂ ) when tax reform is elementary.

We have the mechanical effect,

∫ ∞
0

T̂ (z(n); z∗)f(n)dn =
1

1− FZ(z∗)

∫ ∞
z∗

fZ(z)dz = 1, (

 first term of <̂(T̂ ) and

by definition of T̂ (z; z∗)

 )
and the behavioral response,∫ ∞

0

T ′(z(n))
l̂(n)

l(n)
z(n)f(n)dn

∣∣∣∣∣
T̂=T̂ (z(n);z∗)

(second term of <̂(T̂ ))

= −
∫ ∞
0

T ′(z)ε(z)
T̂ ′(z; z∗)

1− T ′(z)
zfZ(z)dz (using Proposition 1)

= −ε(z∗) T ′(z∗)

1− T ′(z∗)
z∗fZ(z∗)

1− FZ(z∗)
. (by definition of T̂ ′(z; z∗)).

The elementary tax reform implies that the mechanical effect of the tax reform on government

revenue is exactly equal to $1. If the skill distribution were exogenous, f̂(n) ≡ 0 and the third

9For more on the elementary tax reform, see Supplement to STW.

21



term of <̂(T̂ ) would vanish. Then the incidence of the elementary tax reform at income z∗ on

tax revenue would equal the sum of the first and second terms of <̂(z∗) (i.e., the mechanical

effect plus the behavioral response):

<̂ex (z∗) ≡ 1− ε(z∗) T ′(z∗)

1− T ′(z∗)
z∗fZ(z∗)

1− FZ(z∗)
,

which is the same as Eq. (16) in STW and that derived by Diamond (1998) and Saez (2001).

As noted in STW, the second term of <̂ex (z∗) represents the marginal excess burden of tax

reform, which captures the loss in government revenue due to the behavior response of agents.

Evaluating the third term of <̂(T̂ ) with the elementary tax reform gives rise to:

Proposition 3 The effect of the elementary tax reform at income z∗ on government revenue,

<̂ (z∗), is given by

<̂ (z∗) = <̂ex (z∗) +
2β

σ2
χ(z∗)

1− FZ(z∗)
,

where χ(z∗) =



 − k(z∗)
1+κ(z∗) [T (z∗)− E]fZ(z∗)

−
∫∞
z∗

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)

[T (z)− E]fZ(z)dz

 if z∗ ≥ z(1);
κ(z∗)
1+κ(z∗)fZ(z∗)[T (z∗)− E]

+
∫ z(1)
z∗

(∫ z(1)
z

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)

[T (z)− E]fZ(z)dz

−
∫∞
z(1)

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)

[T (z)− E]fZ(z)dz

 if z∗ < z(1).

Note that E =
∫∞
0
T (z)fZ(z)dz (the balanced government budget). Proposition 2 shows

that the effect of the tax reform on f̂(n)
f(n)

consists of (i) the tax reform itself, T̂ (.), and (ii) the

induced effect through l̂(n)
l(n)
. The term χ(z∗) in Proposition 3 displays this effect on government

revenue in the case of the elementary tax reform. If β = 0 (no education expenditures in (1-2)),

we would have <̂ (z∗) = <̂ex (z∗).

Suppose that p(z) ≥ 0 and κ(z) = κ > 0 for all z. Proposition 3 tells us that whether

χ(z∗) is positive or negative critically depends on T (z) relative to E at z∗ or above. Let us

consider z∗ ≥ z(1) and z∗ < z(1), separately.
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In the case where z∗ ≥ z(1), T (z) > E tends to hold at high z and the opposite tends to

hold at low z. Therefore, according to Proposition 3, the presence of the term χ(z∗) provides

a tendency to uphold the result that <̂ (z∗) < <̂ex (z∗) at high z∗ but <̂ (z∗) > <̂ex (z∗) at low

z∗.

In the case where z∗ < z(1), the first two terms of χ(z∗) tend to be negative because

T (z) < E tends to hold. As to the third term of χ(z∗), its sign tends to be negative as well,

given that those z below z(1) are excluded.

Putting together, the presence of χ(z∗) tends to uphold <̂ (z∗) < <̂ex (z∗) at high or low

z∗, whereas it tends to uphold <̂ (z∗) > <̂ex (z∗) for middle z∗ which are neither high nor low.

5.2 Numerical simulations

We calibrate our model to the U.S. economy and evaluate quantitatively the effects of ele-

mentary tax reforms on government revenue using the formula in Proposition 3.

We impose Assumption 1 and choose κ = 0.33 as in STW.

Using PSID data for years 2000-2006, Heathcote, Storesletten and Violante (2017) showed

that the CRP tax scheme approximates the actual tax and transfer system of the U.S. economy

pretty well. According to their estimation, p = 0.181 for the U.S. economy. However, this

estimation may need be modified if including the very rich seriously. First, as noted by

Heathcote, Storesletten and Violante (2017), the PSID undersamples the very rich. Second,

note that the local rate of progressivity of the tax schedule T at income level z is given by

p(z) = zT ′′(z)
1−T ′(z) . The CRP tax scheme is defined by p(z) = p for all z, but the very rich

typically face p(z) = 0 rather than p(z) > 0 for z above some threshold z̄. For example, the

top marginal tax rate of the U.S. federal personal income tax in 2021 remains at 37% for those

individuals whose taxable incomes are $523,600 and higher. Put differently, the current U.S.

personal income tax code features p = 0 rather than p > 0 for z above z̄ =$523,600. In view of
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these two points, we let the CRP tax scheme be the one estimated by Heathcote, Storesletten

and Violante (2017) up to a threshold earnings, above which we append a different CRP tax

scheme with p = 0. This different CRP tax scheme de fact imposes a flat rate on income

above the threshold.

With the tax scheme described, both equations (9) and (10) remain unchanged, except

that p = 0.181 if z ≤ z̄ and p = 0 if z > z̄ (recall that n = λ
−κ
1+κ z

1+pκ
1+κ ). As a result, the

corresponding fZ(z) reamins the same as that reported in Section 3.2.2, except that p = 0.181

if z ≤ z̄ and p = 0 if z > z̄.

We calibrate the parameters, ρ and σ, by matching with the earnings distribution of the

U.S. economy documented by Diaz-Gíménez, Glover and Ríos-Rull (2011). Table 1 reports

the matching result. Figure 1 reports the resulting hazard ratio 1−FZ(z)
zfZ(z)

.

We have

<̂ex (z∗) = 1− ε(z∗) T ′(z∗)

1− T ′(z∗)
z∗fZ(z∗)

1− FZ(z∗)
,

where ε(z∗) = κ
1+pκ

and T ′(z∗) = 1− λ(z∗)−p with p = 0.181 if z∗ ≤ z̄ and p = 0 if z∗ > z̄.

*We let the US tax schedule be represented by CRP with parameters p = 0.181 as in

STW. As such,

ε(z∗) = κ(z∗)
1+p(z∗)κ(z∗) = 0.33

1+0.151×0.33 =

T (z) = z − λ
1−pz

1−p = z − 4
0.849

z0.849

T ′(z∗) = 1− λ(z∗)−p = 1− 4(z∗)−0.151

From Lemma 1,

l(z) = exp
{∫ z

z1

[1−p(z̃)]κ(z̃)
z̃[1+κ(z̃)]

dz̃
}

= exp
{∫ z

z1

0.894×0.33
z̃[1+0.33]

dz̃
}

= exp
{
0.894×0.33

1.33

∫ z
z1

1
z̃
dz̃
}

= z
z1

exp
{
0.894×0.33

1.33

}
z1 = λ

−κ
(1−p)κ = 4

−0.33
0.849×0.33

From Lemma 1,

fZ(z) = f(n(z))1+p(z)κ(z)
1+κ(z)

1
l(z)

= f(n(z))1+0.151×0.33
1+0.33

z1
z

exp
{
−0.894×0.33

1.33

}
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where n(z) = λ
−κ
1+κ z

1+pκ
1+κ = 4

−0.33
1.33 z

1+0.151×0.33
1.33

6 Optimal taxation

As is standard in the literature, the government is assumed to maximize

W ≡
∫ ∞
0

1

q
G(U(n))f(n)dn,

where G(U(n)) is a social welfare function with G(.) being increasing and concave in U(n)

(the concavity is to reflect the redistributive motive of the government), and q denotes the

marginal value of public funds.10 The government needs to keep its budget balanced:

E =

∫ ∞
0

T (z)fZ(z)dz.

From the work of Saez (2001) and STW, we know that a necessary condition for optimal

taxation is

<̂ (z∗) +

∫ ∞
0

Û(n(z))
∣∣∣
T̂=T̂ (z;z∗)

g(n(z))fZ(z)dz = 0,

where g(n(z)) = G′(U(n(z)))/q represents the social marginal welfare weight on agent n,

expressed in terms of the marginal value of public funds. That is, optimal taxation satisfies

the condition that there exists no tax reform that has a positive effect on social welfare.

However, due to the property that f(n) is endogenous rather than exogenously specified in

our setting, this necessary condition need be modified to

<̂ (z∗)+

∫ ∞
0

Û(n(z))
∣∣∣
T̂=T̂ (z;z∗)

g(n(z))fZ(z)dz+

∫ ∞
0

1

q
G(U(n(z)))

f̂(n(z))

f(n(z))

∣∣∣∣∣
T̂=T̂ (z;z∗)

fZ(z)dz = 0.

Let W (z) ≡ 1
q
G(U(n(z))). Following the same logic of proving Proposition 3, we have

∫ ∞
0

1

q
G(U(n(z)))

f̂(n(z))

f(n(z))

∣∣∣∣∣
T̂=T̂ (z;z∗)

fZ(z)dz =
2β

σ2
ψ(z∗)

1− FZ(z∗)
,

10q =
∫∞
0
G′(U(n(z)))fZ(z)dz; see Diamond (1998).
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where ψ(z∗) =



 − k(z∗)
1+κ(z∗) [W (z∗)−W ]fZ(z∗)

−
∫∞
z∗

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)

[W (z)−W ]fZ(z)dz

 if z∗ ≥ z(1);
κ(z∗)
1+κ(z∗)fZ(z∗)[W (z∗)−W ]

+
∫ z(1)
z∗

(∫ z(1)
z

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)

[W (z)−W ]fZ(z)dz

−
∫∞
z(1)

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)

[W (z)−W ]fZ(z)dz

 if z∗ < z(1).

Note that ψ(z∗) has the same form as χ(z∗) of Proposition 3, in that W (z) is in place of

T (z) whileW is in place ofE. This result is not surprising in view of that
∫∞
0
W (z) f̂(n(z))

f(n(z))

∣∣∣
T̂=T̂ (z;z∗)

fZ(z)dz

is in place of
∫∞
0
T (z) f̂(n(z))

f(n(z))

∣∣∣
T̂=T̂ (z;z∗)

fZ(z)dz in the derivation.

Using Propositions 1 and 3, the necessary condition for optimality yields

−
∫ ∞
0

T̂ (z(n); z∗)g(z(n))fZ(z)dz︸ ︷︷ ︸
Û(n(z))

+

∫ ∞
0

T̂ (z(n); z∗)fZ(z)dz︸ ︷︷ ︸−
mechanical effect

ε(z∗)
T ′(z∗)

1− T ′(z∗)
z∗fZ(z∗)

1− FZ(z∗)︸ ︷︷ ︸
behavioral response

+
2β

σ2
χ(z∗) + ψ(z∗)

1− FZ(z∗)︸ ︷︷ ︸
f̂(n)
f(n)

= −
∫∞
z∗ g(z)fZ(z)dz

1− FZ(z∗)︸ ︷︷ ︸
Û(n(z))

+ 1︸︷︷︸
mechanical effect

Û(n(z))

−ε(z∗) T ′(z∗)

1− T ′(z∗)
z∗fZ(z∗)

1− FZ(z∗)︸ ︷︷ ︸
behavioral response

+
2β

σ2
χ(z∗) + ψ(z∗)

1− FZ(z∗)︸ ︷︷ ︸
f̂(n)
f(n)

= 0.

We then obtain

Proposition 4 The optimal marginal tax rate at income z∗ is given by

T ′(z∗)

1− T ′(z∗) =
1

ε(z∗)

1− FZ(z∗)

z∗fZ(z∗)


[
1−

∫∞
z∗ g(z)fZ(z)dz

1−FZ(z∗)

]
+2β
σ2

χ(z∗)+ψ(z∗)
1−FZ(z∗)

 . (12)

The first term on the right-hand side of (12) is derived by Diamond (1998) and Saez

(2001) under the setting where the distribution of people’s skills is exogenous.11 It shows

11It extends the result derived by Piketty (1997).
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that the optimal marginal tax rate at income z∗ is decreasing in ε(z∗) (the labor supply

elasticity w.r.t. the retention rate), z∗fZ(z∗)
1−FZ(z∗) (the hazard rate of the earnings distribution),

and
∫∞
z∗ g(z)fZ(z)dz/[1−FZ(z∗)] (the average social marginal welfare weight of earnings above

z∗). The second term on the right-hand side of (12) is new and it represents our modification

to the conventional formula by letting the distribution of people’s skills become endogenous

according to the human capital accumulation process (1). When the formula (12) is evaluated

at β = 0, f(n) becomes exogenously given and, therefore, the formula (12) collapses to the

result derived by Diamond (1998) and Saez (2001).

After presenting Proposition 3, we explain that the presence of χ(z∗) tends to uphold

<̂ (z∗) < <̂ex (z∗) at high or low z∗, whereas it tends to uphold <̂ (z∗) > <̂ex (z∗) for middle

z∗ which are neither high nor low. We see from (12) that this tendency provides a force to

cut down T ′(z∗) for high or low z∗ but raise up T ′(z∗) for middle z∗. Given that ψ(z∗) takes

the same form as χ(z∗) and that G(U(z)) is increasing in U(z), the presence of ψ(z∗) in (12)

reinforces the force provided by χ(z∗).

From now on, we impose Assumption 1 so that κ(z) = κ. As noted earlier, this is the case

where Diamond (1998, Propositions 1-3) focused on. Under Assumption 1, we have

l(n) = [n(1− T ′(z(n)))]κ. (13)

To evaluate the right-hand side of (12), we need three pieces of inputs regarding the

shape of the tax schedule: T (z), T ′(z) and T ′′(z). Given a set {T ′(zi)} in which T ′(zi)

denotes the marginal tax rate imposed on income z ∈ [zi−1, zi), we calculate {T
′′
(zi)} and

{T (z) | z ∈ [zi−1, zi)} as follows:

T ′′(zi) ≈
T ′(zi+1)− T ′(zi)

zi+1 − zi
(a finite difference approximation to T ′′(.)),

T (z) = T (0) +

i−1∑
j=1

T ′(zj)(zj − zj−1) + T ′(zi)(z − zi−1), z0 = 0, z ∈ [zi−1, zi),
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where T (0) is a lump-sum transfer that can be determined through the balanced government

budget constraint.

Starting with an initial set {T ′(zi)}, we use the formula (12) to compute a new set {T ′(zi)}′.

This loop is repeated until a fixed-point {T ′(zi)}∗ (i.e. {T ′(zi)} = {T ′(zi)}′) is found. We use

the optimal marginal tax rates obtained at β = 0 as the initial {T ′(zi)} and investigate how

{T ′(zi)}∗ differs from the initial {T ′(zi)}.

7 Asymptotic skill distributions and optimal marginal

tax rates

To addres asymptotic optimal marginal tax rates, we need to first address asymptotic skill

distributions. We show that f(n) in Theorem 1 has a Pareto tail asymptotically.

7.1 Asymptotic skill distributions

We follow a constructuve proof as in Achdou, Han, Lasry, Lions, and Moll (2022, proof of

Proposition 10).

Integrating both sides of 5 from n1 to n2 with n1 < n2, where both n1 and n2 are large

enough, we have ∫ n2

n1

f ′(ñ)

f(ñ)
dñ =

2β

σ2

∫ n2

n1

y(ñ)

ñ
dñ−

∫ n2

n1

2

ñ
dñ.

Note that, for n ∈ [n1, n2], there exists a positive constant C̄ <∞ such that ny(n) ≤ C̄ and

hence y(n)/n ≤ C̄/n2. We then have∫ n2

n1

f ′(ñ)

f(ñ)
dñ+

∫ n2

n1

2

ñ
dñ =

2β

σ2

∫ n2

n1

y(ñ)

ñ
dñ ≤ 2β

σ2

∫ n2

n1

C̄

ñ2
dñ =

2β

σ2
C̄

(
1

n1
− 1

n2

)
,

which leads to

ln[f(n2)n
2
2]− ln[f(n1)n

2
1] ≤

2β

σ2
C̄

(
1

n1
− 1

n2

)
.
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Therefore, there exists ξ̄ <∞ such that

lim
n→∞

ln[f(n)n2] = ξ̄.

Equivalently, we have

lim
n→∞

f(n) = exp(ξ̄)n−2, (14)

that is, f(n) converges to a Pareto distribution in the limit.

To sum up, we state:

Proposition 5 The stationary pdf f(n) in Theorem 1 follows an asymptotic power law with

limn→∞ f(n) = exp(ξ̄)n−2.

This result shows that while f(n) in Theroem 1 is a modified Pareto distribution, f(n) as

n→∞ is a Pareto distribution.

Now we verify that there must be C = 0 for equation (4). Integrating (4) gives

1

2

[
σ2n2f(n)

]
=

∫ n

0

[(βy(ñ))ρñf(ñ)] dñ+ Cn+ c, (15)

where c is some constant. Given dn(t) = βy(n(t))n(t)dt + σn(t)dB(t), a stationary f(n)

implies: 0 =
∫
i
dn(t) =

∫
i
βy(n(t))n(t)dt, where notation

∫
i
denotes a summation across all

agents. Therefore,

0 =

∫ ∞
0

βy(n)nf(n)dn.

Given the result shown in (14), the left side of (15) converges to 1
2
σ2 exp(ξ̄), a constant, as

n → ∞. With
∫ n
0
βy(ñ)ñf(ñ)dñ → 0 as n → ∞, it implies that Cn in the right side of (15)

must go to zero as n→∞. Thus, the solution must satisfy C = 0.
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7.2 Asymptotic optimal marginal tax rates

One can rewrite (12) as

T ′(z∗)

1− T ′(z∗) =
1

ε(z∗)


[
1−FZ(z∗)
z∗fZ(z∗)

−
∫∞
z∗ g(z)fZ(z)dz

z∗fZ(z∗)

]
+2β
σ2

χ(z∗)+ψ(z∗)
z∗fZ(z∗)

 .

Using fZ(z)z′ = f(n), we have

8 Conclusion

9 Appendix

9.1 Proof of Theorem 1∫ n

1

f ′(ñ)

f(ñ)
dñ =

2β

σ2

∫ n

1

y(ñ)

ñ
dñ− 2

∫ n

1

1

ñ
dñ⇒∫ n

1

d ln f(ñ)dñ =
2β

σ2

∫ n

1

y(ñ)

ñ
dñ− 2

∫ n

1

d ln ñdñ⇒

ln f(ñ)|n1 =
2β

σ2

∫ n

1

y(ñ)

ñ
dñ− 2 ln ñ|n1 ⇒

ln
f(n)

f(1)
=

2

σ2

∫ n

1

y(ñ)

ñ
dñ− 2 lnn⇒

f(n)

f(1)
= exp

(
2β

σ2

∫ n

1

y(ñ)

ñ
dñ− 2 lnn

)
⇒

f(n)

f(1)
= exp

(
2β

σ2

∫ n

1

y(ñ)

ñ
dñ

)
exp (−2 lnn)⇒

f(n) = f(1)n−2 exp(
2β

σ2

∫ n

1

y(ñ)

ñ
dñ).

9.2 Proof of Lemma 1

From the FOC (2), we have v′(l(n)) = n [1− T ′(z(n))]. This then leads to

l′(n) =
1− T ′(z(n))− z(n)T ′′(z(n))

n2T ′′(z(n)) + v′′(l(n))
,
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which in turn leads to
l′(n)

l(n)
=

1

n

[1− p(z(n))]κ(n)

1 + p(z(n))κ(n)
. (16)

Using (16), we obtain

z′(n) = l(n) + nl′(n) = l(n)

[
1 + n

l′(n)

l(n)

]
=
z(n)

n

1 + κ(n)

1 + p(z(n))κ(n)
,

which yields
z′(n)

z(n)
=

1

n

1 + κ(n)

1 + p(z(n))κ(n)
. (17)

Combining (16) and (17) yields

l′(n)

l(n)z′(n)
=

[1− p(z(n))]κ(n)

z(n) [1 + κ(n)]
.

Therefore, we have
dl
dz

l
=

[1− p(z)]κ(z)

z [1 + κ(z)]
.

Using the boundary condition l(z1) = l(n1) = 1, we then have l(z) stated in Lemma 1.

From

f(n) = fZ(z)z′(n),

we obtain

fZ(z) = f(n)
1

z′(n)

= f(n)
1

l(n)

1 + p(z(n))κ(n)

1 + κ(n)
(using (17))

= f(n(z))
1 + p(z)κ(z)

1 + κ(z)
exp

{
−
∫ z

z1

[1− p(z̃)]κ(z̃)

z̃ [1 + κ(z̃)]
dz̃

}
, z ≥ z(0). (using the derived l(z))

�

9.3 Proof of Proposition 1

Individual utility:
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By definition,

U(n;T + bT̂ ) = y(n;T + bT̂ )− v(l(n;T + bT̂ )).

Applying the first-order Taylor series expansion, we have

v(l(n;T + bT̂ )) = v(l(n;T )) + v′(l(n;T ))[l(n;T + bT̂ )− l(n;T )].

Applying (11), we have

U(n;T + bT̂ ) = U(n;T ) + bÛ(n),

y(n;T + bT̂ ) = y(n;T ) + bŷ(n).

Substituting the above three equations into the first equation and using U(n;T ) = y(n;T )−

v(l(n;T )) yields

Û(n) = ŷ(n)− v′(l(n))l̂(n). (18)

By definition,

y(n;T + bT̂ ) = z(n;T + bT̂ )− [T (z(n;T + bT̂ )) + bT̂ (z(n;T + bT̂ ))],

y(n;T ) = z(n;T )− T (z(n;T )).

Thus,

y(n;T + bT̂ )− y(n;T )

= nl(n;T + bT̂ )− nl(n;T )− [T (z(n;T + bT̂ ))− T (z(n;T ))]− bT̂ (z(n;T + bT̂ ))

= nl(n;T + bT̂ )− nl(n;T )− T ′(z(n;T ))[nl(n;T + bT̂ )− nl(n;T )]− bT̂ (z(n;T + bT̂ ))

= n[1− T ′(z(n;T ))][l(n;T + bT̂ )− l(n;T )]− bT̂ (z(n;T + bT̂ ))

= n[1− T ′(z(n;T ))]bl̂(n;T )− b
{
T̂ (z(n;T )) + T̂ ′(z(n;T ))[z(n;T + bT̂ )− z(n;T )]

}
= bn[1− T ′(z(n;T ))]l̂(n;T )− bT̂ (z(n;T ))− bT̂ ′(z(n;T ))bẑ(n;T ).
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Approximating the first-order effect by leaving out the term that involves b2 gives

ŷ(n) = n[1− T ′(z(n)]l̂(n)− T̂ (z(n)). (19)

Substituting (19) into (18) and invoking the FOC (2) leads to the result stated in the propo-

sition.

Individual labor supply:

Let r(n) ≡ 1− T ′(nl(n)). First, we show ε(n) = ∂ ln l(n)
∂ ln r(n)

= κ(n)
1+p(z(n))κ(n)

.

From the FOC (2), we have12

v′(l(n) + dl(n)) = n [1− T ′(n [l(n) + dl(n)]) + dr(n)] .

Applying the first-order Taylor expansion to the above equation and using the FOC (2) gives13

dl(n)

dr(n)
=

n

v′′(l(n)) + n2T ′′(nl(n))
.

Therefore, we have (using the FOC (2))

∂ ln l(n)

∂ ln r(n)
=
∂l(n)

∂r(n)

r(n)

l(n)

=
n [1− T ′(nl(n))]

[v′′(l(n)) + n2T ′′(nl(n))] l(n)

=
1

l(n)v′′(l(n))
v′(l(n)) + nl(n)T ′′(nl(n))

1−T ′(nl(n))

=
1

1
κ(n)

+ p(nl(n))

=
κ(n)

1 + p(z(n))κ(n)
.

12See the first equation in Supplement to STW.
13v′(l(n) + dl(n)) = v′(l(n)) + v′

′
(l(n))dl(n),

T ′(n [l(n) + dl(n)]) = T ′(n [l(n)] + nT ′
′
(nl(n))dl(n).

⇒

v′(l(n)) + v′
′
(l(n))dl(n) =

n
(
1− T ′(n [l(n)]− nT ′′(nl(n))dl(n)] + dr(n)

)
.

⇒ v′
′
(l(n))dl(n) + n2T ′

′
(nl(n))dl(n) = ndr(n).
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Next, we show l̂(n)
l(n)

= −ε(n) T̂ ′(z(n))
1−T ′(z(n)) .

The FOC (2) gives

v′(l(n;T )) = n[1− T ′(nl(n;T ))],

v′(l(n;T + bT̂ )) = n
{

1− [T ′(nl(n;T + bT̂ )) + bT̂ ′(nl(n;T + bT̂ ))]
}
,

which leads to

v′(l(n;T + bT̂ ))− v′(l(n;T )) = −n[T ′(nl(n;T + bT̂ ))− T ′(nl(n;T ))]− bnT̂ ′(nl(n;T + bT̂ )).

Applying the first-order Taylor series expansion to the above equation gives

v
′′
(l(n;T ))[l(n;T + bT̂ )− l(n;T )] = −n2T ′′(nl(n;T ))[l(n;T + bT̂ )− l(n;T )]

− bn
{
T̂ ′(nl(n;T )) + T̂ ′′(nl(n;T ))n[l(n;T + bT̂ )− l(n;T )]

}
.

By (11), it then leads to

v
′′
(l(n;T ))bl̂(n) = −n2T ′′(nl(n;T ))bl̂(n)− bn[T̂ ′(nl(n;T ))− T̂ ′′(nl(n;T ))bnl̂(n)].

Approximating the first-order effect by leaving out the term that involves b2 yields

v
′′
(l(n;T ))l̂(n) = −n2T ′′(nl(n;T ))l̂(n)− nT̂ ′(nl(n;T )),

which in turn yields

l̂(n) =
−nT̂ ′(nl(n;T ))

v′′(l(n;T )) + n2T ′′(nl(n;T ))
.

Thus, we have (using the FOC (2))

l̂(n)

l(n)
=

n[1− T ′(nl(n;T ))]

l(n)v′′(l(n;T )) + n2l(n)T ′′(nl(n;T ))

−T̂ ′(nl(n;T ))

[1− T ′(nl(n;T ))]

=
κ(n)

1 + p(nl(n))κ(n)

−T̂ ′(nl(n;T ))

1− T ′(nl(n;T ))

= −ε(n)
T̂ ′(nl(n))

1− T ′(nl(n))
.

�
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9.4 Proof of Proposition 2

From Theorem 1, we have

f (n;T ) = f(1)n−2 exp

{
2β

σ2

∫ n

1

y(ñ;T )

ñ
dñ

}
,

which leads to

f
(
n;T + bT̂

)
f (n;T )

=
f(1;T + bT̂ )

f(1;T )
exp

{
2β

σ2

∫ n

1

y(ñ;T + bT̂ )− y(ñ;T )

ñ
dñ

}

=
f(1;T + bT̂ )

f(1;T )
exp

{
ln

[
1 +

2β

σ2

∫ n

1

y(ñ;T + bT̂ )− y(ñ;T )

ñ
dñ

]}
. (using ln(1 + x) ≈ x)

Thus,

1 + b
f̂(n)

f(n)
=

(
1 + b

f̂(1)

f(1)

)(
1 + b

2β

σ2

∫ n

1

ŷ(ñ)

ñ
dñ

)
,

which gives

f̂(n)

f(n)
=
f̂(1)

f(1)
+

2β

σ2

∫ n

1

ŷ(ñ)

ñ
dñ. (approximation by leaving out the term that involves b2)

From (19), we have

ŷ(n) = [1− T ′(z)]z(n)
l̂(n)

l(n)
− T̂ (z(n)).

Therefore,

f̂(n)

f(n)
=
f̂(1)

f(1)
+

2β

σ2

∫ n

1

ŷ(ñ)

ñ
dñ

=
f̂(1)

f(1)
+

2β

σ2

[∫ n

1

1

ñ

(
[1− T ′(z(ñ)]z(ñ)

l̂(ñ)

l(ñ)
− T̂ (z(ñ))

)
dñ

]
.

With f(n;T + bT̂ ) = f(n;T ) + bf̂(n), we have
∫∞
0
f̂(n)dn = 0. Thus, f̂(1)

f(1)
is determined

by
∫∞
0

f̂(n)
f(n)

f(n)dn = 0. It gives

f̂(1)

f(1)
= −2β

σ2

∫ ∞
0

[∫ n

1

1

ñ

(
[1− T ′(z(ñ)]z(ñ)

l̂(ñ)

l(ñ)
− T̂ (z(ñ))

)
dñ

]
f(n)dn.

�
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9.5 Proof of Proposition 3

Part 1: We show the components of <̂(T̂ ).

From

<(T ) =

∫ ∞
0

T (nl(n)f(n)dn,

we have

<(T + bT̂ )−<(T )

=

∫ ∞
0

[
T (nl(n;T + bT̂ )) + bT̂ (nl(n;T + bT̂ ))

]
f(n;T + bT̂ )dn

−
∫ ∞
0

T (nl(n;T ))f(n;T )dn

=

∫ ∞
0

 T (nl(n;T )) + T ′(nl(n;T ))[nl(n;T + bT̂ )− nl(n;T )]

+b
[
T̂ (nl(n;T )) + T̂ ′(nl(n;T ))[nl(n;T + bT̂ )− nl(n;T )]

]
 [f(n;T ) + bf̂(n)]dn

−
∫ ∞
0

T (nl(n;T ))f(n;T )dn

=

∫ ∞
0

 T (nl(n;T )) + T ′(nl(n;T ))nbl̂(n)

+b
[
T̂ (nl(n;T )) + T̂ ′(nl(n;T ))nbl̂(n)

]
 [f(n;T ) + bf̂(n)]dn

−
∫ ∞
0

T (nl(n;T ))f(n;T )dn.

Approximating the first-order effect by leaving out the term that involves b2 gives

<̂(T̂ ) =

∫ ∞
0

[
T̂ (nl(n))f(n;T ) + T ′(nl(n))nl̂(n)f(n;T ) + T (nl(n))f̂(n)

]
dn

=

∫ ∞
0

T̂ (nl(n))f(n)dn+

∫ ∞
0

T ′(nl(n))nl̂(n)f(n)dn+

∫ ∞
0

T (nl(n))f̂(n)dn

=

∫ ∞
0

T̂ (nl(n))f(n)dn+

∫ ∞
0

T ′(nl(n))nl(n)
l̂(n)

l(n)
f(n)dn+

∫ ∞
0

T (nl(n))f(n)
f̂(n)

f(n)
dn.

Part 2: We derive the third term of <̂(T̂ ) for the elementary tax reform.

Step 1. Derive f̂(n(z))
f(n(z))

.

From Proposition 2, we have
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f̂(n)

f(n)
=
f̂(1)

f(1)
+

2β

σ2

[∫ n

1

1

ñ

(
z(ñ)[1− T ′(z(ñ)]

l̂(ñ)

l(ñ)
− T̂ (z(ñ))

)
dñ

]
.

Thus, if z ≥ z(1),

f̂(n(z))

f(n(z))
=
f̂(1)

f(1)
+

2β

σ2

[∫ n

1

1

ñz′(ñ)

(
z(ñ)[1− T ′(z(ñ)]

l̂(ñ)

l(ñ)
− T̂ (z(ñ))

)
z′(ñ)dñ

]

=
f̂(1)

f(1)
+

2β

σ2

∫ z

z(1)

1

z̃ 1+κ(z̃)
1+p(z̃)κ(z̃)

z̃[1− T ′(z̃)]
l̂(n)

l(n)

∣∣∣∣∣
n=n(z̃)

− T̂ (z̃)

 dz̃

 (using (17))

=
f̂(1)

f(1)
− 2β

σ2

[∫ z

z(1)

1

z̃ 1+κ(z̃)
1+p(z̃)κ(z̃)

(
z̃ε(z̃)T̂ ′(z̃) + T̂ (z̃)

)
dz̃

]
(using Proposition 1)

=
f̂(1)

f(1)
− 2β

σ2

[∫ z

z(1)

κ(z̃)

1 + κ(z̃)
T̂ ′(z̃)dz̃ +

∫ z

z(1)

1 + p(z̃)κ(z̃)

z̃(1 + κ(z̃))
T̂ (z̃)dz̃

]
(using definition of ε(z̃))

≡ f̂(1)

f(1)
− 2β

σ2
Ψ(z), (i)

if z < z(1),

f̂(n(z))

f(n(z))
=
f̂(1)

f(1)
+

2β

σ2

[∫ z(1)

z

κ(z̃)

1 + κ(z̃)
T̂ ′(z̃)dz̃ +

∫ z(1)

z

1 + p(z̃)κ(z̃)

z̃(1 + κ(z̃))
T̂ (z̃)dz̃

]

≡ f̂(1)

f(1)
+

2β

σ2
Φ(z). (ii)

Using
∫∞
0

f̂(n)
f(n)

f(n)dn = 0 and f(n)dn = fZ(z)dz gives

0 =

∫ ∞
z(1)

[
f̂(1)

f(1)
− 2β

σ2
Ψ(z)

]
fZ(z)dz +

∫ z(1)

0

[
f̂(1)

f(1)
+

2β

σ2
Φ(z)

]
fZ(z)dz,

which leads to

f̂(1)

f(1)
=

2β

σ2

[∫ ∞
z(1)

Ψ(z)fZ(z)dz −
∫ z(1)

0

Φ(z)fZ(z)dz

]

=
2β

σ2

 ∫∞
z(1)

[∫ z
z(1)

κ(z̃)
1+κ(z̃)

T̂ ′(z̃)dz̃ +
∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

T̂ (z̃)dz̃
]
fZ(z)dz

−
∫ z(1)
0

[∫ z(1)
z

κ(z̃)
1+κ(z̃)

T̂ ′(z̃)dz̃ +
∫ z(1)
z

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

T̂ (z̃)dz̃
]
fZ(z)dz

 .
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Let f̂(1)
f(1)

(z∗) denote f̂(1)
f(1)

with the elementary tax reform at z∗. If z∗ ≥ z(1),

f̂(1)

f(1)
(z∗) =

2β

σ2

 ∫∞
z(1)

[∫ z
z(1)

κ(z̃)
1+κ(z̃)

T̂ ′(z̃)dz̃ +
∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

T̂ (z̃)dz̃
]
fZ(z)dz

−
∫ z(1)
0

[∫ z(1)
z

κ(z̃)
1+κ(z̃)

T̂ ′(z̃)dz̃ +
∫ z(1)
z

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

T̂ (z̃)dz̃
]
fZ(z)dz


=

2β

σ2

[∫ ∞
z∗

[∫ z

z(1)

κ(z̃)

1 + κ(z̃)
T̂ ′(z̃; z∗)dz̃ +

∫ z

z(1)

1 + p(z̃)κ(z̃)

z̃(1 + κ(z̃))
T̂ (z̃; z∗)dz̃

]
fZ(z)dz

]
(
the part involving

∫ z(1)
0

is not relevant
)

=
2β

σ2
1

1− FZ(z∗)

[
k(z∗)

1 + κ(z∗)
fZ(z∗) +

∫ ∞
z∗

(∫ z

z(1)

1 + p(z̃)κ(z̃)

z̃(1 + κ(z̃))
dz̃

)
fZ(z)dz

]
, (by definition of T̂ ′(z̃; z∗) and T̂ (z̃; z∗))

(iii)

if z∗ < z(1),

f̂(1)

f(1)
(z∗) =

2β

σ2

 ∫∞
z(1)

[∫ z
z(1)

κ(z̃)
1+κ(z̃)

T̂ ′(z̃)dz̃ +
∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

T̂ (z̃)dz̃
]
fZ(z)dz

−
∫ z(1)
0

[∫ z(1)
z

κ(z̃)
1+κ(z̃)

T̂ ′(z̃)dz̃ +
∫ z(1)
z

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

T̂ (z̃)dz̃
]
fZ(z)dz


=

2β

σ2

 ∫∞
z(1)

[∫ z
z(1)

κ(z̃)
1+κ(z̃)

T̂ ′(z̃; z∗)dz̃ +
∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

T̂ (z̃; z∗)dz̃
]
fZ(z)dz

−
∫ z(1)
z∗

[∫ z(1)
z

κ(z̃)
1+κ(z̃)

T̂ ′(z̃; z∗)dz̃ +
∫ z(1)
z

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

T̂ (z̃; z∗)dz̃
]
fZ(z)dz

 (
the part involving

∫∞
z(1)

is relevant
)

=
2β

σ2
1

1− FZ(z∗)

 ∫∞
z(1)

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)
fZ(z)dz

−
[

k(z∗)
1+κ(z∗)fZ(z∗) +

∫ z(1)
z∗

(∫ z(1)
z

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)
fZ(z)dz

]
 . (by definition of T̂ ′(z̃; z∗) and T̂ (z̃; z∗))

(iv)

Step 2. Derive
∫∞
0
T (nl(n))f(n) f̂(n(z))

f(n(z))

∣∣∣
T̂=T̂ (z;z∗)

dn.

If z∗ ≥ z(1),

38



∫ ∞
0

T (nl(n))
f̂(n(z))

f(n(z))

∣∣∣∣∣
T̂=T̂ (z;z∗)

f(n)dn

=

∫ ∞
0

[
f̂(1)

f(1)
− 2β

σ2
Ψ(z)

]
T (z)fZ(z)dz (using (i))

=
f̂(1)

f(1)
(z∗)

∫ ∞
0

T (z)fZ(z)dz − 2β

σ2

∫ ∞
z∗

Ψ(z)T (z)fZ(z)dz (elementary tax reform at z∗)

= −2β

σ2

∫ ∞
z∗

[∫ z

z(1)

κ(z̃)

1 + κ(z̃)
T̂ ′(z̃; z∗)dz̃ +

∫ z

z(1)

1 + p(z̃)κ(z̃)

z̃(1 + κ(z̃))
T̂ (z̃; z∗)dz̃

]
T (z)fZ(z)dz

+
f̂(1)

f(1)
(z∗)× E (using definition of Ψ(z) and E =

∫ ∞
0

T (z)fZ(z)dz)

= −2β

σ2
1

1− FZ(z∗)

 k(z∗)
1+κ(z∗)T (z∗)fZ(z∗)+∫∞

z∗

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)
T (z)fZ(z)dz


+
f̂(1)

f(1)
(z∗)× E (by definition of T̂ ′(z̃; z∗) and T̂ (z̃; z∗))

= −2β

σ2
1

1− FZ(z∗)



 k(z∗)
1+κ(z∗)T (z∗)fZ(z∗)+∫∞

z∗

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)
T (z)fZ(z)dz

−
 k(z∗)

1+κ(z∗)fZ(z∗)+∫∞
z∗

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)
fZ(z)dz

× E


(using (iii))

=
2β

σ2
1

1− FZ(z∗)


 − k(z∗)

1+κ(z∗) [T (z∗)− E]fZ(z∗)−∫∞
z∗

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)

[T (z)− E]fZ(z)dz

 ,

39



if z∗ < z(1),∫ ∞
0

T (nl(n))
f̂(n(z))

f(n(z))

∣∣∣∣∣
T̂=T̂ (z;z∗)

f(n)dn

=

∫ z(1)

0

[
f̂(1)

f(1)
+

2β

σ2
Φ(z)

]
T (z)fZ(z)dz +

∫ ∞
z(1)

[
f̂(1)

f(1)
− 2β

σ2
Ψ(z)

]
T (z)fZ(z)dz (using (i) and (ii))

=
f̂(1)

f(1)
(z∗)

∫ ∞
0

T (z)fZ(z)dz +
2β

σ2

∫ z(1)

z∗
Φ(z)T (z)fZ(z)dz

− 2β

σ2

∫ ∞
z(1)

Ψ(z)T (z)fZ(z)dz (

 given z∗ < z(1),

the part involving
∫∞
z(1)

is relevant

 )
=

2β

σ2

∫ z(1)

z∗

[∫ z(1)

z

κ(z̃)

1 + κ(z̃)
T̂ ′(z̃; z∗)dz̃ +

∫ z(1)

z

1 + p(z̃)κ(z̃)

z̃(1 + κ(z̃))
T̂ (z̃; z∗)dz̃

]
T (z)fZ(z)dz

− 2β

σ2

∫ ∞
z(1)

[∫ z

z(1)

κ(z̃)

1 + κ(z̃)
T̂ ′(z̃; z∗)dz̃ +

∫ z

z(1)

1 + p(z̃)κ(z̃)

z̃(1 + κ(z̃))
T̂ (z̃; z∗)dz̃

]
T (z)fZ(z)dz

+
f̂(1)

f(1)
(z∗)× E (using definition of Φ(z) and Ψ(z) and E =

∫ ∞
0

T (z)fZ(z)dz)

=
2β

σ2
1

1− FZ(z∗)

 κ(z∗)
1+κ(z∗)T (z∗)fZ(z∗) +

∫ z(1)
z∗

(∫ z(1)
z

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)
T (z)fZ(z)dz

−
∫∞
z(1)

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)
T (z)fZ(z)dz


+
f̂(1)

f(1)
(z∗)× E (by definition of T̂ ′(z̃; z∗) and T̂ (z̃; z∗))

=
2β

σ2
1

1− FZ(z∗)



 κ(z∗)
1+κ(z∗)T (z∗)fZ(z∗) +

∫ z(1)
z∗

(∫ z(1)
z

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)
T (z)fZ(z)dz

−
∫∞
z(1)

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)
T (z)fZ(z)dz

+

 ∫∞
z(1)

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)
fZ(z)dz

−
[

k(z∗)
1+κ(z∗)fZ(z∗) +

∫ z(1)
z∗

(∫ z(1)
z

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)
fZ(z)dz

]
× E


(using (iv)

=
2β

σ2
1

1− FZ(z∗)




κ(z∗)
1+κ(z∗)fZ(z∗)[T (z∗)− E]

+
∫ z(1)
z∗

(∫ z(1)
z

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)

[T (z)− E]fZ(z)dz

−
∫∞
z(1)

(∫ z
z(1)

1+p(z̃)κ(z̃)
z̃(1+κ(z̃))

dz̃
)

[T (z)− E]fZ(z)dz


 .

�
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