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Abstract

We investigate the rapid growth in the dispersion of housing prices across metropoli-
tan statistical areas (MSAs) in the United States during 1975-2017. We first examine
several explanations for this pattern, and find that it is difficult to fully explain it. Our
econometric analyses show that the log of price-to-rent ratios follows a random walk
process. We then set up a parsimonious asset-pricing island model. We find that the
dispersion of fundamental housing prices grow too slow relative to that in data. Incor-
porating rational bubble solutions, our calibrated model can match the rapid growth
in the dispersion of housing prices.

JEL classification: E30, G12, R30
Keywords: The cross-sectional dispersion of housing prices, excessive dispersion, bubbles

∗We thank Sungbae An, Wen-Tau Hsu, Ji Huang, Nicolas Jacquet, Kevin Lansing, Haoming Liu, Lin Ma,
Thomas Sargent, Yifan Shen, Aloysius Siow, Jinli Zeng, Xin Zheng, and the anonymous referee for helpful
discussions and comments. We also thank excellent research assistance from Chiyuan Gong, Hongyun Xiao,
and Mengying Yang. All remaining errors are ours.

1



1 Introduction

The housing market in the United States during 1975-2017 is featured by a rapid growth in

the dispersion of housing prices across metropolitan statistical areas (MSAs). Since hous-

ing typically takes up a major proportion of household net worth, fluctuations in housing

prices can thus exert significant impacts on the macro-economy.1 Hence, it is important to

understand what drives the rapid rise in the dispersion of housing prices. In this paper we

attempt to investigate this issue.

In Figure 1, we plot the cross-sectional coefficient of variation (CV) for housing prices in

the United States during 1975-2017.2 Our sample consists of a panel of 330 major MSAs in

US. Figure 1 shows that there is a rapid increase in the dispersion of housing prices. The CV

of housing prices in 1975 is 0.17, while this number reaches 0.55 in 2007. Despite a decline

due to the 2007 financial crisis, the CV recovers quickly and restores its pre-crisis level by

2017.3
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Figure 1: The Dispersion of Housing Prices: 1975-2017

Notes: The sample is based on data from a panel of 330 MSA. Housing prices are deflated by the consumer
price index (excluding shelters). The data source during 1975-2007 is Van Nieuwerburgh and Weill (2010).
We extend the remaining series using FMHPI. See Appendix A for details.

1Wolff (2006), using the 2001 Survey of Consumer Finances (SCF) data, finds that housing (principal
residence and other real estate) accounts for 38% of household assets.

2The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean.
3The CV computed in Figure 1 is unweighted. We also compute the weighted CV using housing units in

each MSA as the weight. The pattern does not change.
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We first examine several intuitively plausible explanations for patterns observed in Figure

1. These explanations emphasize the population concentration, the divergence in income

growth rates across MSAs, or the divergence in income growth rates of top income groups

across MSAs. Through investigations of these explanations we find that it is difficult to fully

explain the rapid rise in the dispersion of housing prices during 1975-2017.

We then conduct econometric analyses of panel data. We empirically show that housing

price processes are non-stationary and housing prices grow at different rates across MSAs.

These findings can potentially lead to the pattern depicted in Figure 1. We find that rental

growth rates are stationary. While different MSAs have different growth rates of housing

prices, they have the same average growth rate of rental prices. This comparison hints that

rentals are not the main reason of the rapid rise in the dispersion of housing prices. This

comparison also encourages us to further investigate house price-to-rent ratios. Through a

panel-data unit-root test we find that house price-to-rent ratios are also non-stationary.

To investigate further patterns in Figure 1 we set up a parsimonious asset-pricing island

model. Each island corresponds to an MSA. We first study the fundamental solution of the

asset pricing model, in which the fundamental housing prices are completely supported by

rents while both the inter-temporal Euler equation and the transversality condition hold.

Our calculations show that the cross-sectional CV of housing prices is larger than that of

housing prices implied by the fundamental solution for each year during 1975-2017. Housing

prices in the United States display excessive dispersion. Also we find that the growth in the

dispersion of fundamental housing prices is too slow relative to the pattern in data.

Inspired by our empirical finding that the log of price-to-rent ratios follows a random walk

process, we then investigate rational bubbles in our asset pricing model. Following Froot

and Obstfeld (1991) and Lansing (2010), we generate bubble components of asset prices in

the Lucas asset-pricing model by removing the transversality condition. Specifically, the

stochastic growth component of the price-to-rent ratio causes housing price bubbles in our

model. Bubble components can only be supported by speculations. Furthermore, our model

can deliver explicit expressions for both fundamental and bubble components of the price-

to-rent ratio. Our calibrated model with rational bubbles can simultaneously match four
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stylized facts in the United States during 1975-2017, the rapid growth in the dispersion of

housing prices, a moderate increase in the dispersion of rental prices, the rising mean of

housing prices, and the rising mean of rental prices. The stochastic growth component of

the price-to-rent ratio in the bubble solution is the key mechanism, through which our model

could match the rapid growth in the dispersion of housing prices. We also perform several

robustness checks. Our model still successfully match housing price moments.

One may think that the stochastic growth component of the price-to-rent ratio eventually

leads to explosive dispersion of housing prices. In an extension, we introduce an extrinsic

uncertainty, which represents the confidence state, into the benchmark model. We construct

a sunspot equilibrium in which bubbles eventually burst in the long-run. But before bubbles

burst, there is a rapid growth in the dispersion of housing prices. Thus our paper also

contributes to the literature of sunspot equilibria and asset pricing.

1.1 Related literatures

Our research is mainly related to two strands of literature: the housing price dispersion and

asset bubbles.

Van Nieuwerburgh and Weill (2010) develops a dynamic spatial equilibrium model and

calibrate productivity dispersion to match the increase of cross-sectional earnings dispersion

across MSAs in the United States during 1975-2007.4 They show that the calibrated model

can match the observed 30-year increase of housing price dispersion. Their framework relies

on two main mechanisms, the labor mobility in response to local wage shocks and inelastic

housing supply due to regulatory constraints. The housing price in Van Nieuwerburgh and

Weill (2010) is equal to the expected present value of rents net of depreciation. And their

model predicts that the magnitude of the increase in the dispersion of rental prices is similar

to that of the increase in the dispersion of housing prices. However, this prediction is not

supported by their data.

In Figure 2, we plot the CV of housing prices and that of rental prices in the United

4Eeckhout et al. (2014) use a spatial equilibrium model to investigate the skill distribution in cities.
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Figure 2: Housing Price Dispersion vs. Rental Price Dispersion

Notes: The sample is based upon a panel of 330 MSAs. Both housing prices and rental prices are deflated
by the consumer price index (excluding shelters). The data source during 1975-2007 is Van Nieuwerburgh
and Weill (2010). We extend the remaining series using FMHPI. See Appendix A for details.

States. Our panel of housing prices is unbalanced and contains 330 major MSAs during

1975-2017. But data of rental prices are only available during 1984-2017. Housing prices

have much higher values of the CV than rental prices. This implies that distributions of

housing prices are more dispersed than those of rental prices. Moreover, the growth of the

CV of housing prices is more rapid than that of the CV of rental prices. The CV of housing

prices in 1984 is 1.94 times that of rental prices, while this number reaches 2.75 in 2017.5

In this paper, we generate a bubble component of the house price-to-rent ratio. Our model

is able to match the rapid rising dispersion of housing prices given a moderate increase in

the CV of rental prices. While labor mobility plays a crucial role in Van Nieuwerburgh

and Weill (2010), it is completely prohibited in our island economy. In our model rational

bubbles caused by speculations within each island are the main driver of the increase in the

dispersion of housing prices.

Gyourko et al. (2013) shows that the widening dispersion of housing prices can be ex-

plained by inelastic land supply in some individual-preferred locations combined with an

increasing number of high-income households nationally. Their empirical results show that

5The CV computed in Figure 2 is unweighted. We also compute the weighted CV using housing units in
each MSA as the weight. The pattern does not change.
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the growing number of rich families in the United States during 1970-2000, can capture more

than 80% of the excess growth of housing price in superstar cities in that period. However,

due to the lack of data on local income distributions, it is difficult to empirically investigate

the transmission mechanism from the change of the national income distribution to the rapid

increase in the dispersion of housing prices.

Froot and Obstfeld (1991) generates intrinsic bubble, which only depends on dividends,

in an asset-pricing model by removing the transversality condition. Intrinsic bubble can

cause asset prices to overreact to changes in fundamentals, and thus can help to explain

excess volatility of stock prices.6 Froot and Obstfeld (1991) assumes that the growth rate

of dividends is independent and identically distributed over time. Lansing (2010) permits

autocorrelation of the growth rate of dividends and generalizes the intrinsic rational bubble.

He shows that the rational bubble component of the price-dividend ratio can evolve as a

geometric random walk without drift, such that the mean of the bubble growth rate is zero.

Granziera and Kozicki (2015) investigate whether expectations that are not fully rational

can explain the evolution of the housing price index and the price-to-rent ratio in the United

States during 1987-2011.

In terms of the agent’s decision problem, our paper share the same framework as Lansing

(2010) and Granziera and Kozicki (2015). Similar to these two papers, ours also makes

use of the solution of the asset price other than the fundamental price itself. However,

applications are different in these three papers. Lansing (2010) uses the model to study the

price-dividend ratio of the stock market in the United States during 1871-2008. Granziera

and Kozicki (2015) investigates the housing price index in the United States. Our paper

exams the cross-sectional dispersion of house prices. In Granziera and Kozicki (2015) the

near rational bubble solution, which produces a stationary price-to-rent ratio, replicates the

moments of the price-to-rent ratio well.7 We find that the rational bubble solution, which

produces a non-stationary price-to-rent ratio, generates the rapid rising dispersion of house

prices given a moderate increase of rental price CV.

6See LeRoy (2004) for a survey about rational bubbles. Glaeser and Nathanson (2015) review recent
literatures on housing bubbles.

7The data in Granziera and Kozicki (2015) include the remarkable downturn of the housing market in
the United States after 2007. This could be one of the reasons why a stationary price-to-rent ratio fits their
data.
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The rest of this paper is organized as follows. Two plausible explanations for rising

dispersion of housing prices are examined in Section 2. Empirical findings of housing prices

and price-to-rent ratios are reported in Section 3. An asset-pricing island model is presented

in Section 4. Section 5 contains calibration and simulation results. We extend the benchmark

model to allow bubble burst in Section 6. Section 7 concludes the paper.

2 Alternative mechanisms

In this section we examine three possible explanations for the pattern displayed in Figure 1.

Investigating of these explanations we find that it is difficult to fully explain the rapid rise

in the dispersion of housing prices during 1975-2017.

Explanation 1. The increasing population concentration leads to the rise in the dispersion

of housing prices.

If population becomes more concentrated, the dispersion of housing demand intensity

should also increase consequently. This could, in turn, lead to the rise in the dispersion of

housing prices. However, data do not support this hypothesis. Using the decennial census

during 1970-2010 in the United States, we construct data of populations and housing units

at the MSA level. When we use the CV to measure the population concentration, we indeed

observe a declining trend in the dispersion of populations. We also find that the CV of

housing units decreases over the period. The results are robust both in a balanced panel of

81 MSAs and in an unbalanced panel of 330 MSAs. We report these results in Table 1. The

CV of populations steadily decreases from 1.15 (1.94) in 1970 to 0.90 (1.64) in 2010 in our

sample of 81 (330) MSAs. Similarly, the CV of housing units steadily decreases from 1.20

(2.01) in 1970 to 0.86 (1.56) in 2010 in our sample of 81 (330) MSAs.

Explanation 2. The divergence in income growth rates across MSAs leads to the rise in

the dispersion of housing prices.

When average family incomes in different MSAs increase at different rates, housing prices

could potentially have different growth rates. Thus we could observe a rapid increase in the

dispersion of housing prices across MSAs. We use data from Gyourko et al. (2013) to test this

mechanism. We calculate growth rates of the housing price and of the average family income
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Table 1: The CV of Populations and Housing Units

CV of Population CV of Housing Units
Year balanced unbalanced balanced unbalanced
1970 1.1461 1.9366 1.1991 2.0110
1980 1.0085 1.7452 1.0144 1.7595
1990 0.9605 1.7046 0.9226 1.6586
2000 0.9310 1.6740 0.8825 1.5970
2010 0.9020 1.6357 0.8552 1.5608

Notes: Numbers are from authors’ computations. See Appendix A for details of our data.

between 1970 and 2000 in each MSA. To investigate the divergence in income growth rates,

we define superstar MSAs and non-superstar MSAs as in Gyourko et al. (2013).8 There are

21 superstar MSAs and 296 non-superstar MSAs.9 In Table 2 we report the mean growth rate

of the housing price and the mean growth rate of the average family income within the group

of superstar MSAs and those means within the group of non-superstar MSAs. Comparing

the column of superstar MSAs with that of non-superstar MSAs, we find that the moderate

difference of growth rates of average incomes cannot explain the large difference of growth

rates of housing prices. Thus this hypothesis alone cannot fully explain the rapid increase

in the dispersion of housing prices.10

8In Gyourko et al. (2013), an MSA is a superstar in a particular year of 1970, 1980, 1990, or 2000, if it
has high demands for houses and low elasticity of housing supply over the prior two decades. They calculate
the growth rates of housing prices and housing units over four time periods: 1950-1970, 1960-1980, 1970-
1990, and 1980-2000. They identify high-demand MSAs by checking whether the sum of the growth rates
of housing prices and housing units in one MSA is above the sample median. They define inelastic-supply
MSAs as those in which the ratio of housing price growth rate-to-housing unit growth rate is in the top decile
of the sample. An MSA has time-invariant superstar status if it is a superstar in any two decades between
1970 and 2000 (See pp.179-180 of Gyourko et al. (2013)). In Table 2 we use time-invariant superstar status
of Gyourko et al. (2013).

9The MSA definitions of Gyourko et al. (2013) are based on 1990 county boundaries.
10The divergence in the income growth rates of top income groups across MSAs could also lead to the

rise in the dispersion of housing prices. The fast growth of incomes of the rich people in some particular
MSAs could cause the rapid growth of the housing prices in these MSAs. However, it is difficult for us to
test this hypothesis due to the limited information on the income distribution within an MSA. The major
challenge is top-coding. For example, incomes in the Census data and in the American Community Survey
suffer from the top-coding problem. This leads to the difficulty to estimating the top incomes at the MSA
level. Gyourko et al. (2013) uses the number of families in different income bins as the proxy of the income
distribution at the MSA level. But this method cannot help us to estimate the income growth rates of the
top income groups in MSAs.
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Table 2: Growth Rates of Housing Prices and of Average Family Incomes: 1970-2000

Superstar MSAs Non-superstar MSAs
Housing Prices 131.80% 63.52%

(0.805) (0.325)
Average Family Incomes 42.51% 32.13%

(0.173) (0.126)

Notes: Numbers are from authors’ computations. The data source is Gyourko et al. (2013). Terms in
parentheses are standard deviations.

3 Empirical findings

In this section we conduct panel-data tests on housing prices, rental growth rates, and house

price-to-rent ratios. For these empirical tests we directly obtain the data from Van Nieuwer-

burgh and Weill (2010) for the period of 1984-2007 and construct the data series from the

same data sources for the later period 2008-2017.11

We find that housing prices have a unit root, and housing prices grow at different rates

across MSAs. These findings are consistent with the rapid rise in the dispersion of housing

prices. We also find that rental growth rates are stationary. While different MSAs have

different growth rates of housing prices, they have the same average growth rate of rental

prices. These observations imply that rental prices may not be able to explain the rapid

rise in the dispersion of housing prices. To separate the impact of rental prices on housing

prices, we further investigate house price-to-rent ratios. We find that house price-to-rent

ratios are also non-stationary. Inspired by this empirical finding we set up a theoretical

model in Section 4, where rational bubbles can generate non-stationary price-to-rent ratios.

3.1 Housing prices

In this subsection we first use panel data to show that housing prices have a unit root. Then

we show that housing prices grow at different rates across MSAs.

Let pi,t denote the housing price of MSA i in year t. To have a consistent sample for

11The nominal home value of each MSA in Van Nieuwerburgh and Weill (2010) during 1975-2007 is con-
structed through combining the median single-family home value from the 2000 Census with the Freddie Mac
Conventional Mortgage Home Price Index (CMHPI). From February 2011, Freddie Mac stopped publishing
the CMHPI index, and replaced the CMHPI with the (Freddie Mac House Price Index) FMHPI as its exter-
nally published house price index. To address the discontinuity in housing price series, we add a time period
dummy into regression equations whenever possible and report test statistics for different sample periods.
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housing prices and rental prices, we use the balanced panel including 81 MSAs for the period

during 1984-2017.12 To show the stationarity of housing prices, we need to perform a unit-

root test of log pi,t in our balanced panel. The conventional panel-data unit-root tests, such as

Im-Pesaran-Shin (IPS) test, rely on the assumption that there does not exist cross-sectional

dependence. However, as several cross-sectional independence tests for log pi,t shown in

Appendix B.1, we find that the panel data series of housing prices are not independent cross-

sectionally. To accomplish the task, we therefore proceed to the cross-sectionally augmented

IPS (CIPS) test developed by Pesaran (2007). We conduct the CIPS test against the null

hypothesis that the log of housing prices carries a unit root. The cross-sectionally augmented

Dickey-Fuller (CADF) regression takes the following form,

∆ log pi,t = gi + hi log pi,t−1 +milog pt−1 + ni∆log pt + vit, (1)

where ∆ is the first-difference operator and log pt is the cross-sectional average of log pi,t.

The CIPS test generates CADF statistics for each individual MSA and computes the CIPS

test statistic which is the simple cross-sectional average of individual CADF statistics. We

report our CIPS test statistics and critical values at 10%, 5%, and 1% significance levels for

different sample periods in Table 3. We find that the CIPS test statistic in the overall sample

period, −1.694, is substantially smaller than the critical values at all three levels in absolute

terms.13 Therefore, we cannot reject the null hypothesis which assumes the existence of a

unit root in the panel data of log pi,t.

After the confirmation of non-stationarity in housing price dynamics, one might be still

unclear about the reason for the rising cross-sectional difference over time as shown in Figure

1. More specifically, do different MSAs have the same average growth rate of housing prices?

Next, we attempt to answer the above question by conducting a joint hypothesis test after

12The housing price data are available during 1975-2017 while the rental price data are only available after
1984. Therefore, we choose the sample period 1984-2017 for all empirical tests.

13The CIPS test statistics for the overall sample period 1984-2017 and the early period 1984-2007 are
smaller than these three critical values in absolute terms. The test statistic for the later period 2008-2017
is marginally higher than the critical values, which is mainly due to a short-term decline of housing prices
in the aftermath of 2007 financial crisis. The test statistic for a period after 2013 is significantly below all
critical values as the housing prices start to recover.
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Table 3: A Panel Unit-root Test for Housing Prices

Sample Period Test Statistic Critical Value 10% Critical Value 5% Critical Value 1%
1984-2017 −1.694 −2.020 −2.080 −2.170
1984-2007 −1.129 −2.010 −2.070 −2.170
2008-2017 −2.372 −2.010 −2.110 −2.290

Notes: The table presents CIPS test statistics and critical values for 10%, 5%, and 1% significance levels
for different sample periods. The CIPS test statistics for the overall sample period 1984-2017 and the early
period 1984-2007 are smaller than these three critical values in absolute terms. The test statistic for the later
period 2008-2017 is marginally higher than the critical values due to a short-term decline of housing prices
in the aftermath of 2007 financial crisis. The test statistic for a period after 2013 start be significantly below
all critical values as the housing prices recover. Therefore, we generally cannot reject the null hypothesis
which assumes that there exists a unit root in the panel data of log pi,t.

running a panel regression of the growth rates with city fixed effects,

log pi,t = χi + η1 log pi,t−1 + ϑtY eart + η21(year ≥ 2008) + ei,t, (2)

where Y eart is the year dummy, 1(year ≥ 2008) is the time dummy for new sample period,

and ei,t is the error term. Therefore, χi represents the time-invariant city fixed effect in

MSA i. A joint hypothesis test against the null hypothesis, H0 : χ1 = χ2 = ... = χI , can be

conducted. Table 4 shows that the chi-squared test statistic 209.29 is larger than its critical

value at the 1% significance level, 112.33. And the p-value is 0.0001. As test results clearly

reject the null hypothesis, we know that housing prices grow at different rates across MSAs.

These findings are consistent with the rapid rise in the dispersion of housing prices.

Table 4: Test Statistics for City Fixed Effects in Housing Prices

Chi-square Statistic p-value
209.29 0.0001

Notes: The table presents the statistics of the joint hypothesis test against the null hypothesis, H0 : χ1 =
χ2 = ... = χI . The chi-squared test statistic 209.29 is larger than its critical value at the 1% significance
level, 112.329. And the p-value is 0.0001. Thus test results reject the null hypothesis. Housing prices grow
at different rates across MSAs.

3.2 Rental growth rates

We also conduct a panel-data unit-root test on rental growth rates. Unlike housing prices,

we find that rental growth rates are stationary. More importantly, we show that different
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MSAs have the same average growth rate of rental prices.

Let xi,t denote the rental growth rate of MSA i in year t. In Appendix B.2, we find that

there exists cross-sectional dependence in the panel data of rental growth rates. We also

conduct the CIPS panel unit-root test for rental growth rates xi,t with the CADF regression

takes a similar form as (1). Similar to subsection 3.1, the null hypothesis assumes that rental

growth rates have a unit root. We report our CIPS test statistics in Table 5. We find that

the CIPS test statistics for different sample periods are larger than critical values at 10%,

5%, and 1% significance levels in absolute terms. Therefore, we reject the null hypothesis

that there exists a unit root in the panel data of xi,t.

Table 5: A Panel Unit-root Test for Rental Growth Rates

Period Test Statistics Critical Value 10% Critical Value 5% Critical Value 1%
1984-2017 −5.227 −2.020 −2.080 −2.170
1984-2007 −4.318 −2.010 −2.070 −2.170
2008-2017 −3.061 −2.010 −2.110 −2.290

Notes: The table presents CIPS test statistics and critical values for 10%, 5%, and 1% significance levels for
different sample periods. The CIPS test statistics for all three sample periods are larger than these three
critical values in absolute terms. The corresponding p-values are close to zero. Therefore, we reject the null
hypothesis that there exists a unit root in the panel data of xi,t.

Knowing that rental growth rates are stationary, we propose the following panel regression

with city fixed effects for the panel of 81 MSAs during 1984-2017,

xi,t = ζ i + η1xi,t−1 +$tY eart + η21(year ≥ 2008) + εi,t, (3)

where Y eart is the year dummy, 1(year ≥ 2008) is the time dummy for new sample period,

and εi,t is the error term. We also omit year fixed effects in an alternative specification.

The estimate of the autocorrelation term η1 is 0.057 in the specification without year fixed

effects and insignificantly −0.002 in the specification with year fixed effects. To test whether

different MSAs have the same average growth rate of rental prices, we conduct a joint

hypothesis test against the null hypothesis, H0 : ζ1 = ζ2 = ... = ζI . Table 6 shows that the

chi-squared test statistics, 41.78 and 33.00, are smaller than the critical value at the 10%

significance level, 96.58. Thus the test results in both specifications cannot reject the null

hypothesis. Different MSAs have the same average growth rate of rental prices.
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Table 6: Test Statistics for City Fixed Effects in Rental Growth Rates

Chi-square Statistic p-value
With Year Fixed Effects 41.78 0.9999

Without Year Fixed Effects 33.00 1.0000

Notes: The table presents the statistics of the joint hypothesis test against the null hypothesis, H0 : ζ1 =
ζ2 = ... = ζI . The chi-squared test statistics in the specifications with and without year fixed effects, 41.78
and 33.00, are smaller than the critical value at the 10% significance level, 96.58. The corresponding p-values
are close to 1. Thus the test results in both specifications cannot reject the null hypothesis. Different MSAs
have the same average growth rate of rental prices.

3.3 House price-to-rent ratios

In this subsection we conduct a panel-data unit-root test on house price-to-rent ratios and

show that they are non-stationary. We also find that different MSAs have the same average

growth rate of price-to-rent ratios. These results may not be surprising given the dynamic

movements of housing prices and rental prices in previous subsections.

Let di,t be the rental price of MSA i in period t, and denote yi,t ≡ pi,t/di,t as the price-to-

rent ratio of MSA i in period t. In Appendix B.3 we show that there exists cross-sectional

dependence in the panel data of house price-to-rent ratios as well. Therefore, we conduct

the CIPS panel unit-root test for house price-to-rent ratios, log yi,t, in the same fashion as

shown for housing prices and rental growth rates. The null hypothesis assumes that the log

of price-to-rent ratios has a unit root. We report our CIPS test statistics and critical values

at 10%, 5%, and 1% significance levels in Table 7. We find that the CIPS test statistic for

the overall sample, −2.017, is smaller than critical values at 5% and close to the critical

value of the 1% level in absolute terms. Therefore, we accept the null hypothesis at 5%

significance level and marginally accept the null hypothesis at 1% significance level. For the

early period 1984-2007, the test statistic is substantially smaller than these three critical

values in absolute terms which clearly leads to an acceptance of the null hypothesis. The

test statistic for the later period 2008-2017 is only marginally higher than the 1% critical

values. The behavior of house price-to-rent ratio is mainly driven by housing prices, which

experience a short-term decline after 2007 financial crisis. As the housing prices start to

recover since 2013, house price-to-rent ratios soon become nonstationary again. Therefore,

we can generally conclude an existence of unit-root in the house price-to-rent ratio in our
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overall sample period.

Table 7: A Panel Unit-root Test for House Price-to-rent Ratios

Period Test Statistics Critical Value 10% Critical Value 5% Critical Value 1%
1984-2017 −2.017 −2.020 −2.080 −2.170
1984-2007 −1.577 −2.010 −2.070 −2.170
2008-2017 −2.297 −2.010 −2.110 −2.290

Notes: The table presents CIPS test statistics and critical values for 10%, 5%, and 1% significance levels.
The CIPS test statistic is close to the critical value of the 1% level in absolute terms during the overall
sample period, but is insignificant during 1984-2007. The test statistic for the later period 2008-2017 is only
marginally higher than the 1% critical values, and become insignificant again after 2013 as housing prices
recover from the 2007 financial crisis. Therefore in general, we cannot reject the null hypothesis that there
exists a unit root in the panel data of log yi,t.

To test whether different MSAs have the same average growth rate of price-to-rent ratios,

we conduct a joint hypothesis test after running a panel regression of the growth rates with

city fixed effects,

log yi,t = ωi + η1 log yi,t + ξtY eart + η21(year ≥ 2008) + ιi,t, (4)

where Y eart is the year dummy, 1(year ≥ 2008) is the time dummy for new sample period,

and ιi,t is the error term. A joint hypothesis test against the null hypothesis, H0 : ω1 = ω2 =

... = ωI , is conducted. Table 8 shows that the chi-squared test statistic 228.38 is larger than

its critical value at the 1% significance level, 112.33. And the p-value is 0.0000. Thus test

results suggest a rejection of the null hypothesis. Different MSAs have distinctive average

growth rates of price-to-rent ratios.

Table 8: Test Statistics for City Fixed Effects in House Price-to-rent Ratios

Chi-square Statistic p-value
228.38 0.0000

Notes: The table presents the statistics of the joint hypothesis test against the null hypothesis, H0 : ω1 =
ω2 = ... = ωI . The chi-squared test statistic 228.38 is larger than its critical value at the 1% significance
level, 112.33. And the p-value is 0.0000. Thus test results imply a rejection to the null hypothesis. Different
MSAs have distinctive average growth rates of price-to-rent ratios.
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4 An island model

We present our theoretical framework in this section. Time is discrete and infinite with

t = 0, 1, 2... The economy is divided into I > 1 segmented islands. Each island is populated

with infinitely-lived agents of measure 1. Agents are not allowed to move across islands.

Agents on all islands share identical preferences. On each island there is an asset-pricing

problem as in Lucas Jr (1978).

Houses are the only asset in the economy. An agent can only purchase houses on the

island where she lives. Each unit of house delivers a stream of stochastic rents. Let ct denote

the consumption in period t and U (ct) be the period utility function. A representative agent

on island i chooses a sequence of consumption and a sequence of housing units to maximize

the expected present value of her lifetime utility,14

E0

∞∑
t=0

βtU (ct) ,

where β ∈ (0, 1) denotes the time discount factor. The agent’s budget constraint in period

t can be written as

ct + ptst = (pt + dt) st−1, with ct, st > 0,

where st represents the unit of houses purchased, pt is the housing price, and dt is the

stochastic housing rent in period t. The growth rate of housing rents, xt ≡ log (dt/dt−1), is

assumed to follow the process,

xt − x̄ = ρ (xt−1 − x̄) + εt, εt ∼ N
(
0, σ2

ε

)
, (5)

where |ρ| < 1. We assume that each island in our model has one unit of houses.15

14Since no mobility across islands is allowed, we omit the subscript for island i to simplify the notation.
15Favara and Song (2014) show that housing prices not only have different trends in different cities, but also

display heterogeneous short-run dynamics. They use a user-cost model to study how dispersed information
affects the equilibrium housing price. They also assume that housing supply is inelastic in each MSA and
agents are not allowed to move across MSAs. Thus each MSA in their model can also be viewed as a closed
island economy.
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From the first order conditions of the agent’s problem, we have

pt = βEt

[
U ′ (ct+1)

U ′ (ct)
(pt+1 + dt+1)

]
. (6)

When there is no technology to store housing rents, and the housing supply is normalized to

be 1 in each island, we have ct = dt for all t. The individual utility function takes a constant

relative risk aversion (CRRA) form, i.e. U (ct) = (ct)
1−α−1
1−α , where the parameter α > 0 is the

coefficient of relative risk aversion. Thus from equation (6) we have

pt = βEt

[(
dt+1

dt

)−α
(pt+1 + dt+1)

]
. (7)

Let us denote by yt ≡ pt/dt the house price-to-rent ratio in period t. Together with the

definition of xt, equation (7) is equivalent to

yt = βEt [(yt+1 + 1) exp [(1− α)xt+1]] . (8)

Following Lansing (2010), we let zt ≡ β (yt + 1) exp [(1− α)xt], which is a composite variable

that depends on both the growth rate of rents and the price-to-rent ratio. Equation (8) leads

to

zt = β [Et (zt+1) + 1] exp [(1− α)xt] . (9)

Equation (8) also implies that yt = Et (zt+1).

4.1 The fundamental solution

In this subsection, we investigate the fundamental solution of price-to-rent ratios and its

implications for housing prices.

Under the transversality condition,

lim
T→∞

Et

[
βT
U ′ (ct+T )

U ′ (ct)
pt+T

]
= 0, (10)

16



the iteration of equation (6) leads to the following housing price equation,

pt = Et

∞∑
j=1

[
βj
U ′ (ct+j)

U ′ (ct)
dt+j

]
,

which is the counterpart of equation (10) in Van Nieuwerburgh and Weill (2010). The

fundamental housing price can be completely supported by rents.

Let zft be the fundamental solution to equation (9), i.e. the solution satisfying both equa-

tion (9) and the transversality condition. We have the following proposition from Lansing

(2010) on an approximate analytical expression of the fundamental solution to equation (9):

Proposition 1 The fundamental solution to equation (9) can be approximated by

zft = exp [a0 + a1ρ (xt − x̄)] , (11)

where a1 solves

a1 =
1− α

1− ρβ exp
[
(1− α) x̄+ 1

2
a21σ

2
ε

] , (12)

and

a0 = log

[
β exp [(1− α) x̄]

1− β exp
[
(1− α) x̄+ 1

2
a21σ

2
ε

]] , (13)

provided β exp
[
(1− α) x̄+ 1

2
a21σ

2
ε

]
< 1.

Proof See Proposition 1 of Lansing (2010).

From Proposition 1 we have the fundamental solution of the price-to-rent ratio,

yft = Et

(
zft+1

)
= exp

(
a0 + a1ρ (xt − x̄) +

1

2
a21σ

2
ε

)
. (14)

Formula (14) implies that yft is stationary. In Section 3.3 we show that the house price-to-

rent ratio process is non-stationary in data. Thus the fundamental solution of housing prices

cannot match data. We will introduce a non-stationary part to the price-to-rent ratio in the

model.
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4.2 Rational bubble solutions

The fundamental solution to equation (9), zft , satisfies the transversality condition. There

are other solutions to equation (9) which do not satisfy the transversality condition.

We consider a bubble component of zt, z
b
t . Let

zt = zft + zbt . (15)

Substituting equation (15) into equation (9) yields

zbt = βEt
(
zbt+1

)
exp [(1− α)xt] . (16)

We define the bubble component of the price-to-rent ratio, ybt , as ybt ≡ 1
β
zbt exp [− (1− α)xt],

such that equation (16) implies that ybt = Et
(
zbt+1

)
. Thus we have

Et (zt+1)︸ ︷︷ ︸
yt

= Et

(
zft+1

)
︸ ︷︷ ︸

yft

+ Et
(
zbt+1

)︸ ︷︷ ︸
ybt

,

which implies that any yt obtained by yt = yft + ybt , satisfies equation (8). The following

proposition can be obtained from Lansing (2010).

Proposition 2 There exists a continuum of intrinsic rational bubbles of the form

zbt = zbt−1 exp [λ0 + λ1 (xt − x̄) + λ2 (xt−1 − x̄)] , with zb0 > 0,

where λ0, λ1, and λ2 satisfies the following two conditions,

λ2 = − (ρλ1 + 1− α) , (17)

and
1

2
λ21σ

2
ε + (1− α) x̄+ log (β) + λ0 = 0. (18)

Proof See Proposition 2 of Lansing (2010).
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We have multiple equilibria since we have three unknowns λ0, λ1, and λ2 for equations

(17) and (18).

The equations above have two roots of λ1. The solution with negative λ0 will eventually

shrink to zero, while the solution with positive drift implies the price-to-rent ratio will grow

unboundedly.

We thus have the bubble component of the price-to-rent ratio,

ybt = ybt−1 exp [λ0 + (λ1 − (1− α)) (xt − x̄) + (λ2 + 1− α) (xt−1 − x̄)] , with yb0 > 0. (19)

Formula (19) shows that ybt has stochastic growth rates. Thus the price-to-rent ratio,

yt = yft + ybt ,

can easily generate an increasing dispersion. This is the key mechanism, through which our

model could match the rapid growth in the dispersion of housing prices. Through calibrating

the model, we illustrate this mechanism in Subsection 5.3. Even after we pick values for λ0,

λ1, and λ2 in formula (19), we still need finding the initial yb0. In our quantitative analyses,

we calibrate yb0 for each MSA from data.

5 Quantitative analyses

In this section, we calculate housing prices in the island economy. Each island corresponds

to an MSA. We intend to investigate whether our model can generate the rapid growth in

the dispersion of housing prices. In the following, we first discuss parameterizations and

calibration strategies. After we calculate housing prices with only the fundamental solution,

we add bubbles to our results. We also conduct some robustness checks.

5.1 Calibrations

The model is calibrated to the housing market in the United States during 1984-2017. Each

period in the model corresponds to one year in data. Our sample contains a panel of 330
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MSAs. We pin down the rental growth process by running the following panel regression in

the sample,

xi,t = κ+ ρxi,t−1 + εi,t, εi,t ∼ N(0, σ2
ε). (20)

The estimation yields ρ̂ = 0.132, which is statistically significantly different from zero. Equa-

tion (20) also implies that the estimate of the average rental growth rate x̄ is equal to

κ̂/(1− ρ̂). We report these estimated parameter values in Table 9.

Table 9: Parameter Values of the Rental Growth Process

Model Parameter Value
Autocorrelation coefficient ρ 0.132
Mean of x x̄ 0.00369
Standard deviation of the error term σε 0.0404

Notes: The values of parameters in the table are estimated by running a panel regression.

The time discount factor, β, is chosen to match the mean housing value obtained in

the rational bubble scenario during 1984-2017. β is estimated to be 0.968, which is also

consistent with the value commonly found in the literature. α is the coefficient of relative

risk aversion, and we calibrate it to match the growth factor of housing price CV obtained

from the rational bubble scenario during 1984-2017.16 We summarize these parameters in

Table 10.

Table 10: Benchmark Parameterization

Model Parameter Value
Time discount factor β 0.968
Risk aversion coefficient α 1.020

Notes: we choose the value of β to match the mean home value during 1984-2017, and the value of α to
match the growth factor of housing value CV in 1984 to that in 2007.

5.2 The fundamental solution and excessive dispersion

We first calculate fundamental housing prices for each MSA. As in Section 4.1, we can ap-

proximate the fundamental solution of the price-to-rent ratio by using equation (14). We

16In Section 5.4, we try different combinations of α and β.
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determine values of a1 and a0 by formulae (12) and (13). Given our benchmark parameteri-

zation, we find a1 = −0.23 and a0 = 3.45.

After we obtain housing prices for 330 MSAs, we can calculate the cross-sectional mean

and CV of housing prices for each year during 1984-2017. In Figure 3, we plot the mean and

the CV of the simulated fundamental housing prices and their counterparts in data.
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Figure 3: Fundamental Housing Prices

Notes: We approximate the analytical solution for the fundamental price-to-rent ratio according to equation
(14). We then obtain the housing price by multiplying the price-to-rent ratio with the corresponding rental
price in each MSA. The y-axis of panel (b) is in the logarithm scale.

As depicted in Figure 3, simulated fundamental housing prices fail to match either the

mean or the CV in data. Fundamental housing prices cannot replicate the rapid increase in

the dispersion of housing prices across MSAs.

Panel (a) of Figure 3 also shows that the cross-sectional CV of housing prices is larger

than that of housing prices implied by the fundamental solution for each year during 1984-

2017. Shiller (1981) and LeRoy and Porter (1981) show that time series of shock prices

exhibit excess volatility, i.e. the CV of time series of stock prices is larger than the CV of

the expected present value of future real dividends. Bulkley et al. (1996) study the cross-

sectional dispersion of individual company share prices. They find that stock prices of a large

sample of firms in the United States are excessively dispersed compared with ex post rational

stock prices calculated from subsequent dividend realizations. Through our calculations, we
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find excessive dispersion for housing prices in the United States.

5.3 Results with a rational bubble

In Section 5.2 we find that fundamental housing prices cannot match the rapid rise in the

dispersion of housing prices across MSAs. Then we add a bubble component to the house

price-to-rent ratio. Thus we have the house price-to-rent ratio, yi,t,

yi,t = yfi,t + ybi,t,

for i = 1, 2, · · · I.

We have calculated the fundamental component of the price-to-rent ratio
{
yfi,t

}
in Section

5.2. Now we compute the bubble component of the price-to-rent ratio
{
ybi,t
}

by using equation

(19).

Given the initial value of the fundamental component of the price-to-rent ratio yfi,0 for

each MSA, we can derive the initial value of the bubble component of the price-to-rent ratio

ybi,0 by

ybi,0 = yi,0 − yfi,0,

where yi,0 is the house price-to-rent ratio in year 1984 in data.

Applying equation (19) we also need to know λ0, λ1, and λ2. We pin down λ1 and λ2 from

equations (17) and (18). We calibrate the drift term λ0 to minimize the distance between

the average growth rate of housing prices in the model and their counterparts in the panel

of 330 MSAs during 1985-2017. λ0 solves

min
λ0

2017∑
t=1985

[∑I
i=1(p

m
i,t/p

m
i,t−1 − 1)

I
−
∑I

i=1(p
d
i,t/p

d
i,t−1 − 1)

I

]2
,

where pdi,t is the housing price in MSA i at time t in data and pmi,t is the corresponding housing

price in the model. We find λ0 = 0.030, λ1 = 1.305, and λ2 = 0.028.

After we calculate yi,t, we then multiply yi,t with its corresponding rental price, to generate

the housing price. To calculate the cross-sectional mean and CV of housing prices, we assign
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an equal weight to each MSA for benchmark results. But the results are fairly robust when

we use housing units as weights. In Figure 4, we plot benchmark results together with their

counterparts in data.
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Figure 4: Benchmark Results of Housing Prices: 1984-2017

Notes: Our calculations incorporate a panel of 330 MSAs. Housing prices are plotted during 1984-2007. We
apply true rental price data during the same periods. The y-axis of panel (b) is in the logarithm scale.

Evidently, our calculated series of the mean and the CV of housing prices match data

well. When we use the CV to measure the dispersion of housing prices, data show a rapid

increase in the CV of housing prices during 1984-2017. The CV in data increases from 0.227

in 1984 to 0.524 in 2017. Since the growth factor of CV is one of our targets, so our model

exactly mimics the depicted pattern. The correlation between the model generated CV and

the data counter-part reaches 0.818, and the mean square error is as small as 0.0031.

Our model cannot match the decline in the home value as well as its CV after 2005

trigged by the global financial crisis. This is mainly because rental price in the data do not

seem to experience a decline in the majority of the MSAs as shown in Figure 5. In addition,

our model predicts a less smooth movements of CV over time in comparison with the data,

since housing value pattern are entirely driven by the rental prices, and this seems to suggest

that certain policies/factors that are only effective in housing market but not in the rental

market.
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Figure 5: Rental Price Comparisons during 2006-2008

Notes: We plot rental prices of each MSA in two consecutive years near the period of global financial crisis.

5.4 Robustness

In this section, we perform several robustness exercises. Firstly, we evaluate how well our

model can match data prior to 1984, in which we do not have data on rental prices and

we estimate them using simulated method of moments. Secondly, we also simulate housing

prices using the entire simulated rental prices, while we use actual rental data after 1985

in the benchmark simulation. Finally, we change certain calibration targets and repeat the

benchmark simulation exercises. We find that our results are robust for all these alternatives.

Calculations during 1975-2017 The theoretical framework in Section 4 enables us to

calculate the house price-to-rent ratio. We then obtain the housing price by multiplying the

price-to-rent ratio with the corresponding rental price in each MSA. Thus we need the rental

price in each MSA. However, due to the limited availability of rental data, we estimate rental

prices during 1975-1983. In Figure 6, we present a snapshot of the kernel density for rental

price data during 1984-2007.

The patterns in Figure 6 suggests that rental prices across MSAs follow a log-normal

distribution. But means and variances potentially change over time. Therefore, we assume
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Figure 6: Rental Price Distributions: 1984-2007

Notes: The figure presents a snapshot of the kernel density for rental price data during 1984-2007.

that rental prices in year 1974 and year 1975 follow a joint log-normal distribution lnN(µ,Σ),

where µ =

 µ1

µ2

 denotes the average rental prices in 1974 and in 1975 respectively. And

Σ =

 σ2
1 σ12

σ21 σ2
2

 is the variance-covariance matrix, whose diagonal elements represent the

variances of rental prices in 1974 (σ2
1) and in 1975 (σ2

2) respectively. The off-diagonal element

(σ12) captures the correlation between rental prices in 1974 and those in 1975. Given this

assumed joint distribution of rental prices in 1974 and 1975, we can use the rental growth

process (20) to simulate rental prices during 1976-2017. We estimate µ1, µ2, σ1, σ2, and

σ12 using the simulated method of moments (SMM).17 We jointly estimate their values to

minimize the distance between means and variances of simulated rental prices during 1984-

2017 and their counterparts in data. We report estimated parameter values in Table 11.

We randomly draw rental prices of 330 MSAs in 1974 and in 1975 from the log-normal

17We impose the Holder’s inequality restriction: σ12 ≤ σ1σ2.
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Table 11: SMM Estimation Results

Parameter Value
µ1 1.23
µ2 1.17
σ1 0.101
σ2 0.124
σ12 0.0029

Notes: The values of parameters in the table are estimated by using the simulated method of moments
(SMM).

distribution specified in Table 11. These enable us to compute the initial rental growth

rate for each MSA in 1975. Given the initial distribution {xi,0}, we can then simulate a

panel of {xi,t} during 1976-1984 using equation (20). Then we can back out rental prices

during 1976-1984. However, our simulated rental prices during 1975-1984 are ”anonymous.”

In order to connect the simulated rental prices to the rental data in each MSA, we label

simulated rental prices such that the simulated rentals in 1984 obey the same rank as the

1984 rental data.

We estimate rental prices during 1975-1983 in the benchmark simulation, because we

do not have rental data for that period. To make sure that our results are not driven by

the estimation strategy, we now only calculate housing prices using rental prices from data

without any estimation. As rental data are available after 1984, we calculate housing prices

after 1985, when we can obtain initial rental growth rates, {xi0}.18 We calculate the house

price-to-rent ratio yi,t = yfi,t + ybi,t for i = 1, 2, · · · I and t = 1985, 1986, · · · 2017. Then we

multiply {yi,t} with the corresponding rental price in each MSA to obtain the housing price.

Results are presented in Figure 7. The CV in data increases from 0.141 in 1975 to 0.524

in 2017. Our model predicts that the CV rises from 0.141 in 1975 to 0.560 in 2017.19 In

addition, the correlation between the simulated CV and the data series is 0.914, and the

mean square error is 0.0044 as shown in Table 12. We also replicate the rapid rise in the CV

of housing prices during this period.

18We use the value of λ0 as in our benchmark simulation. There λ0 is calibrated to minimize the distance
between the average growth rate of housing prices in the model and their counterparts in data during
1985-2017.

19In 1975 our model has the same CV as in data since we use housing prices in 1975 in data as initial
housing prices in robustness exercise.
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Figure 7: Robustness Results: 1975-2017 using SMM

Notes: We estimated rental prices during 1974-1983 using simulated method of moments. The y-axis of
panel (b) is in the logarithm scale.

Purely simulated rental prices In the previous simulation, we use actual rental price

data after 1985. Since rental prices are important inputs for our simulations, we now inject

the entire simulated rental price panel into the economy instead, and evaluate how estimation

results may vary accordingly. Results are reported in Figure 8. The CV in data increases

from 0.141 in 1975 to 0.524 in 2017. Our model predicts that the CV rises from 0.141 in

1975 to 0.527 in 2017. In addition, the correlation between the simulated CV and the data

series is 0.911, and the mean square error is 0.0035 as shown in Table 12. We also generate

the rapid growth in the CV of housing prices during this period.

Alternative Targets In our benchmark calibration, the initial price-to-rental ratio, y0, is

chosen to match the initial housing value in year 1984. In the following exercise, we instead

choose the value of {yi0} so that the distance between the simulated {yit} and their data-

counterpart is minimized, and the results are reported in Figure 9. The CV increases from

0.221 in 1984 to 0.519 in 2017. The correlation between data and model generated CV is

0.823, and the mean square error is 0.0030.

In the following exercises, we re-calibrate the value of β to match the max-min housing
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Figure 8: Robustness Results: All Rental Prices are Simulated

Notes: In this robustness check, the entire sequence of rental prices during 1975-2017 is from simulations.
The y-axis of panel (b) is in the logarithm scale.
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Figure 9: Robustness Results: Alternative initial value of price-to-rental ratio

Notes: In this exercise, we re-calibrate the value of yi,0. The y-axis of panel (b) is in the logarithm scale.

value ratio during 1984-2017.20 We also change the value of α to be 1.5, which is a value

commonly set in the literature. The results are reported in Figure 10. The CV increases

from 0.221 in 1984 to 0.583 in 2017. The correlation between data and model generated CV

is 0.814, and the mean square error is 0.0031.

20Housing price reaches the maximum level in year 2005, and minimum level in year 1984.
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Figure 10: Robustness Results: Alternative value of α and β

Notes: In this exercise, we re-calibrate the value of β and use a different value of α as a robustness check as
well. The y-axis of panel (b) is in the logarithm scale.

Table 12: Summary statistics between model generated CV and data

Model Correlation MSE
Benchmark 0.818 0.0031
SMM 0.914 0.0044
SMM with simulated rents 0.911 0.0035
different initial yi0 0.823 0.0030
different α and β 0.814 0.0031

Notes: This table presents the correlations and mean squared errors (MSE) of summary statistics generated
by the rational bubble model and those in actual data. Both correlations and MSE show that the rational
bubble model highly fit the actual data.

6 An extension: sunspots and bubble burst

It is widely documented that the incidence of the 2007 global financial crisis was caused by

the burst of housing bubbles in the United States. It seems that there are different regimes

of housing price dynamics. Since the price-to-ratio has a stochastic growth component in

our benchmark model, and thus it eventually leads to explosive dispersion of housing prices.

In this section, we present an extension of the benchmark model. In the extension, bubbles

eventually burst in the long-run. But before bubbles burst, there is a rapid growth in the

dispersion of housing prices.

To model regime switching of housing price dynamics, we introduce an extrinsic uncer-
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tainty into our benchmark model. Kashiwagi (2014) finds a rational expectations sunspot

equilibrium in a model based on search and matching theory. His model can generate a stable

path of rental prices and a rapid growth of housing prices. However, he does not investigate

the implication of a sunspot equilibrium on the cross-sectional dispersion of housing prices.

As in Kashiwagi (2014), the extrinsic uncertainty in our model represents the confidence

state, which could be either the high (H) state or the low (L) state. This sunspot event is

unrelated to fundamentals of the economy.

Equations (17) and (18) are two key equations generating the price-to-rent ratio in

our rational bubble economy. We need these two equations to pin down three parame-

ters {λ0, λ1, λ2}, and this allows us one degree of freedom. In quantitative analyses of our

benchmark model, we calibrate λ0. In this section, we instead let the parameter λ0 take four

possible values, which depend on confidence states of the current and the next period. We

denote by λij0 (i, j ∈ {H,L}) these four values. Superscripts of λij0 mean that the confidence

state in the current period is i and the confidence state in the next period is j. We also

denote by ψt the confidence state in period t. Let zbt (ψt) represent zbt in the confidence state

ψt. Let θ ≡ 1− α. The following proposition characterizes the sunspot equilibrium.

Proposition 3 There exists a continuum of rational bubbles of the form,

zbt+1 (H) =

 zbt (H) exp
(
λHH0 + λ1 (xt+1 − x̄) + λ2 (xt − x̄)

)
, if ψt = H

zbt (L) exp
(
λLH0 + λ1 (xt+1 − x̄) + λ2 (xt − x̄)

)
, if ψt = L,

and

zbt+1 (L) =

 zbt (H) exp
(
λHL0 + λ1 (xt+1 − x̄) + λ2 (xt − x̄)

)
, if ψt = H

zbt (L) exp
(
λLL0 + λ1 (xt+1 − x̄) + λ2 (xt − x̄)

)
, if ψt = L.

The confidence state follows a Markov process, and πij represents the transition probability

from the state i in the current period to the state j in the next period. Constants λHH0 > 0,

λHL0 < 0, λLL0 < 0, λLH0 >> 0, λ1, λ2, πHH , πHL, πLL, and πLH satisfy

λ2 = − (λ1ρ+ θ) , (21)

30



βπLH exp

(
λLH0 +

1

2
(λ1σε)

2 + θx̄

)
+ βπLL exp

(
λLL0 +

1

2
(λ1σε)

2 + θx̄

)
= 1, (22)

βπHH exp

(
λHH0 +

1

2
(λ1σε)

2 + θx̄

)
+ βπHL exp

(
λHL0 +

1

2
(λ1σε)

2 + θx̄

)
= 1, (23)

πHH + πHL = 1, (24)

and

πLL + πLH = 1. (25)

Proof See appendix C.

Thus in a sunspot equilibrium we have

zt(H) = zft + zbt (H) ,

and

zt(L) = zft + zbt (L) ,

where zft is given by equation (11).

Introducing a sunspot event into the benchmark model, we greatly expand our degree of

freedom. In total we have ten unknowns and five equations. From equations (22) and (23)

we can express λLH0 and λHL0 as

λLH0 = log

(
1− βπLL exp

(
λLL0 + 1

2
(λ1σε)

2 + θx̄
)

βπLH

)
− 1

2
(λ1σε)

2 − θx̄,

and

λHL0 = log

(
1− βπHH exp

(
λHH0 + 1

2
(λ1σε)

2 + θx̄
)

βπHL

)
− 1

2
(λ1σε)

2 − θx̄.

A sufficient condition to guarantee λHL0 < 0 is

1− βπHH exp

(
λHH0 +

1

2
(λ1σε)

2 + θx̄

)
< βπHL.
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This could help us to generate a scenario of bubble burst.

We illustrate a scenario of bubble burst in a simple numerical exercise. We first pick up

values for some parameters in Table 13.

Table 13: Parameterization in the Model with Sunspots

Parameter Value
λ1 0.5
πLH 0.1
πHL 0.09
λLL0 −0.2
λHH0 0.2

Notes: The values of parameters in the table are predetermined.

Then we solve λLH0 , λHL0 and λ2 from equations (21), (22), and (23). We concentrate on

the sample of 330 MSAs here. The initial year is still 1984. The process of the rental price

growth rate and initial rental price distributions are the same as in quantitative analyses

of the benchmark model. Moreover, we set confidence states of all 81 MSAs in 1975 to the

state L. In each year after 1975, different MSAs may have different realizations of confidence

states, even though the confidence state in each MSA follows the same Markov process. We

simulate the model economy for 1, 000 periods. Through simulations, we calculate the cross-

sectional mean and CV of housing prices. These are reported in Figure 11.

7 Conclusion

We investigate the rapid growth in the dispersion of housing prices across MSAs in the

United States during 1975-2017. We first examine several intuitively plausible explanations

for this pattern, and find that it is difficult to fully explain it.

We then conduct econometric analyses of panel data. We empirically show that housing

prices are non-stationary and housing prices grow at different rates across MSAs. We find

that rental growth rates are stationary. While different MSAs have different growth rates of

housing prices, they have the same average growth rate of rental prices. Through a panel

unit-root test we also find that the log of price-to-rent ratios follows a random walk process.
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Figure 11: Simulations of a Sunspot Equilibrium

Notes: We simulate sunspot events for 330 MSAs from year 1984. The confidence states of all 81 MSAs
in 1975 are set as L, but may have different realizations afterwards even if they follow the same Markov
process. We simulate the model economy for 1,000 periods. The y-axis of panel (b) is in the logarithm scale.

To investigate further the rapid growth in the dispersion of housing prices, we set up

a parsimonious asset-pricing island model. Each island corresponds to an MSA. We first

study the fundamental solution of the asset pricing model. Our calculations show that the

cross-sectional CV of housing prices is larger than that of housing prices implied by the

fundamental solution for each year during 1975-2017. Housing prices in the United States

display excessive dispersion. Also we find that the growth in the dispersion of fundamental

housing prices is too slow relative to the pattern in data. Incorporating rational bubble

solutions, our calibrated model can simultaneously match four stylized facts in the United

States during 1975-2017, the rapid growth in the dispersion of housing prices, the moderate

increase in the dispersion of rental prices, the rising mean of housing prices, and the rising

mean of rental prices.

One of the important mechanisms that we do not take into account explicitly in this paper

is the credit channel of houses. Kiyotaki and Moore (1997) show that collateral channel of

assets could amplify the volatility of their prices. Brumm et al. (2015) find that borrowing

against collateral substantially increases the return volatility of long-lived assets. Gelain et

al. (2015) investigate different impacts of shifting lending standards and movements in the

mortgage interest rate, on the boom-bust cycle of the housing market in the United States
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during 1995-2012. Favilukis et al. (2016) find that a relaxation of financing constraints

leads to a large boom in house prices. We could follow these researches to investigate the

implication of the credit channel on the cross-sectional dispersion of housing prices. We leave

this for our future research.

References

Brumm, Johannes, Michael Grill, Felix Kubler, and Karl Schmedders, “Collateral

requirements and asset prices,” International Economic Review, 2015, 56 (1), 1–25.

Bulkley, George, Andy Snell, and Ian Tonks, “Excessive stock price dispersion: A

regression test of cross-sectional volatility,” LSE Financial Markets Group Working Paper

246, 1996.

Eeckhout, Jan, Roberto Pinheiro, and Kurt Schmidheiny, “Spatial sorting,” Journal

of Political Economy, 2014, 122 (3), 554–620.

Favara, Giovanni and Zheng Song, “House price dynamics with dispersed information,”

Journal of Economic Theory, 2014, 149, 350–382.

Favilukis, Jack, Sydney Ludvigson, and Stijn Van Nieuwerburgh, “Macroeconomic

Implications of Housing Wealth, Housing Finance and Limited Risk Sharing in Equilib-

rium,” Journal of Political Economy, Forthcoming, 2016.

Froot, Kenneth A and Maurice Obstfeld, “Intrinsic bubbles: The case of stock prices,”

The American Economic Review, 1991, pp. 1189–1214.

Gelain, Paolo, Kevin J Lansing, and Gisle James Natvik, “Explaining the boom-

bust cycle in the US housing market: A reverse-engineering approach,” Federal Reserve

Bank of San Francisco Working Paper 2015-02, 2015.

Glaeser, Edward L. and Charles G. Nathanson, “Housing Bubbles,” in Gilles Duran-

ton, J Vernon Henderson, and William Strange, eds., Handbook of Regional and Urban

Economics, Vol. 5B, Amsterdam: North Holland, 2015, chapter 11, pp. 702–751.

34



Granziera, Eleonora and Sharon Kozicki, “House price dynamics: Fundamentals and

expectations,” Journal of Economic Dynamics and Control, 2015, 60, 152–165.

Gyourko, Joseph, Christopher Mayer, and Todd Sinai, “Superstar cities,” American

Economic Journal: Economic Policy, 2013, 5 (4), 167–99.

Hoyos, Rafael E De, Vasilis Sarafidis et al., “Testing for cross-sectional dependence in

panel-data models,” Stata Journal, 2006, 6 (4), 482.

Jr, Robert E Lucas, “Asset prices in an exchange economy,” Econometrica: Journal of

the Econometric Society, 1978, pp. 1429–1445.

Kashiwagi, Masanori, “Sunspots and self-fulfilling beliefs in the US housing market,”

Review of Economic Dynamics, 2014, 17 (4), 654–676.

Kiyotaki, Nobuhiro and John Moore, “Credit cycles,” Journal of Political Economy,

1997, 105 (2), 211–248.

Lansing, Kevin J, “Rational and near-rational bubbles without drift,” The Economic

Journal, 2010, 120 (549), 1149–1174.

LeRoy, Stephen F, “Rational exuberance,” Journal of Economic literature, 2004, 42 (3),

783–804.

and Richard D Porter, “The present-value relation: Tests based on implied variance

bounds,” Econometrica, 1981, 49 (3), 555–574.

Nieuwerburgh, Stijn Van and Pierre-Olivier Weill, “Why has house price dispersion

gone up?,” The Review of Economic Studies, 2010, 77 (4), 1567–1606.

Pesaran, M Hashem, “A simple panel unit root test in the presence of cross-section

dependence,” Journal of Applied Econometrics, 2007, 22 (2), 265–312.

Shiller, Robert, “Do stock prices move too much to be justified by subsequent Changes in

dividends?,” The American Economic Review, 1981, 71 (3), 421–436.

35



Wolff, Edward N, “Changes in household wealth in the 1980s and 1990s in the United

States,” in Edward N Wolff, ed., International Perspectives on Household Wealth, Chel-

tenham: Edward Elgar, 2006, chapter 4, pp. 107–150.

36



Appendices

A Data sources and variable definitions

The metropolitan statistical area (MSA): The metropolitan statistical area (MSA) in

the paper is based on 2006 MSA definitions. To account for size differences among MSAs, we

follow Van Nieuwerburgh and Weill (2010) to replace 11 largest MSAs by their constituent

metropolitan divisions (MSAD). Our primary sample consists of 330 MSAs during 1975-

2017. We map those MSAs in our sample in Figure A.1. Note that Danville, VA belongs

to the unbalanced sample of 330 MSAs during 1975-2007. However, it was demoted to

a Micropolitan Statistical Area in 2013 due to core urban area’s population falling below

50,000. Therefore, we only have 329 MSAs in the 2008-2017 sub-sample for the unbalanced

panel.

Figure A.1: MSAs in our balanced and unbalanced panel

Notes: Missing: red; Unbalanced panel: light blue; Balanced panel: dark blue

Housing prices: We obtain nominal housing price data during 1975-2007 directly from

Van Nieuwerburgh and Weill (2010). The nominal home value of each MSA is constructed

through combining the median single-family home value from the 2000 Census with the

Freddie Mac Conventional Mortgage Home Price Index (CMHPI), a repeated-sale housing

price index. In 1975 housing prices are only available in 81 MSAs. Data of more and more
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MSAs have become available over time. By 1996 all 330 MSAs have housing price data.21

We deflate nominal home values into 1983 dollars using regional non-housing price indices,

which are also taken from Van Nieuwerburgh and Weill (2010).

We want to extend the sample after 2007 from the same data source. However, since

February 2011, Freddie Mac stopped publishing the CMHPI index, and replaced the CMHPI

with the Freddie Mac House Price Index (FMHPI) as its externally published house price

index. The CMHPI is no longer in production or available to the public. The two national

indices differ in two important ways. First, the national FMHPI is a weighted average of

state indices, whereas the national CMHPI was a weighted average of nine Census region

indices. Second, the FMHPI uses Freddie Mac portfolio share weights to construct the

national index, whereas the CMHPI used census region counts of single-family housing.

The FMHPI also differs from the CMHPI in its treatment of refinance transactions. The

Classic CMHPI included refinance transactions in the estimation but did not account for

disparities between appraisals for refinance purposes and purchases. The FMHPI includes

these transactions and uses statistical methods to account for the possibility that appraisal

values might systematically differ from purchase prices. The purchase-only CMHPI excluded

refinance transactions.

Therefore, we have to adopt FMHPI data as an alternative data series for housing prices

after 2007. We aggregate the monthly FMHPI non-seasonally adjusted data into the annual

series and map the current MSAs carefully into the 2006 MSA definitions. We also deflate

nominal home values during 2008-2017 into 1983 dollars using regional non-housing price

indices, which are constructed from the same data sources as Van Nieuwerburgh and Weill

(2010).

Rental prices: We take nominal rental data during 1984-2007 directly from Van Nieuwer-

burgh and Weill (2010). We deflate nominal rentals into 1983 dollars using regional non-

housing price indices, which are provided by Van Nieuwerburgh and Weill (2010). We use

rental data in all 330 MSAs during 1984-2007.

For the nominal rents after 2007, we follow the data sources and methods in the online

appendix of Van Nieuwerburgh and Weill (2010) to construct the data series. We first adopt

21See Appendix D.2 of Van Nieuwerburgh and Weill (2010) for more details.
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the annual or semiannual rent of shelter indices of 25 large metropolitan areas from the

Bureau of Labor Statistics (BLS), which correspond to 48 out of our 330 MSA regions. We

then extrapolate the nominal rents after 2007 based on rent indices and nominal rents in 2007.

For the remaining MSAs, we use rental data from the Fair Market Rents database (FMR),

published annually by the U.S. Department of Housing and Urban Development (HUD). We

aggregate the county-level FMR rental data into the MSA level according to 2006, weighted

by 2000 Census population in each county. As also noted by Van Nieuwerburgh and Weill

(2010), one problem with the FMR data is that the reported rent percentile changes over

time. We adjusted the reported 40th percentile rent level to the median level using the

method proposed by Van Nieuwerburgh and Weill (2010). Note that Van Nieuwerburgh and

Weill (2010) use the median gross rent from the 2000 Census to obtain the level for each

regions. We also deflate nominal rent prices into 1983 dollars using regional non-housing

price indices, which are constructed from the same data sources as Van Nieuwerburgh and

Weill (2010).

Non-Housing Price Indices: We use non-housing price indices to deflate the nominal

housing prices and nominal rental prices into 1983 dollars. For the non-housing price indices

during 1975-2007, we directly adopt those from Van Nieuwerburgh and Weill (2010). For

the indices after 2007, we construct from the same data sources as Van Nieuwerburgh and

Weill (2010) to ensure consistency. We first adopt the annual, semiannual, or monthly

consumer price indices of services less rent of shelter for available metropolitan areas from

the Bureau of Labor Statistics (BLS). For remaining MSAs, we assign the regional ex-shelter

price indices published by the BLS according to the city population and Census region.

Note that Van Nieuwerburgh and Weill (2010) use 2000 cost-of-living index (COLI) data to

obtain the cross-sectional variation in the price level. We extrapolate the non-housing price

indices in later years by matching the growth of price based on the 2007 price indices in

Van Nieuwerburgh and Weill (2010). This practice also gives us smooth price indices in the

two sub-sample periods.

Population: The original data are from Table 24 of Population and Housing Unit Counts,

United States Summary: 2010. The United States Census Bureau releases five waves of

population data from 1970 to 2010 at the county level. We collect data and aggregate them

39



to the MSA level according to 2006 MSA definitions.

Housing units: The original data are from Table 24 of Population and Housing Unit

Counts, United States Summary: 2010. The United States Census Bureau releases five

waves of housing unit data from 1970 to 2010 at the county level. We collect data and

aggregate them to the MSA level according to 2006 MSA definitions.

B Cross-sectional independence tests

To test the cross-sectional independence in panel data of yit, we run a panel regression,

yit = αi + β′xit + uit, i = 1, ..., I and t = 1, ..., T,

where xit is a vector of regressors, β is a vector of coefficients, and αi represents time-invariant

fixed effects. The error term uit is assumed to be independent and identically distributed

(i.i.d.) along time.

The null hypothesis assumes that error terms are independent across i. Thus we have

H0 : ρij = ρji = cor (uit, ujt) = 0 for i 6= j,

versus

H1 : ρij = ρji 6= 0 for some i 6= j,

where ρij is the product-moment correlation coefficient of uit and ujt,

ρij = ρji =

∑T
t=1 uitujt(∑T

t=1 u
2
it

)1/2 (∑T
t=1 u

2
jt

)1/2 .
Our panel data have the property of short T and large I. Thus we conduct Pesaran’s

test and Friedman’s test for the cross-sectional dependence.22

22See De Hoyos et al. (2006) for more details.
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B.1 Tests for the log of housing prices

We conduct the cross-sectional dependence tests for the log of housing prices after running

the following panel regression with city fixed effects,

log pi,t = χi + φ1 log pi,t−1 + φ21(year ≥ 2008) + ei,t, (B.1)

where 1(year ≥ 2008) is a time dummy and ei,t is the error term. We report test results in

Table B.1. Small p-values suggest that there exists cross-sectional dependence in the panel

data of log pi,t.

Table B.1: Cross-sectional Dependence Tests for Housing Prices

Pesaran’s Test Friedman’s Test
Test statistic 165.746 1377.986
p-value 0.0000 0.0000

Notes: The table presents the statistics of the cross-sectional dependence test for the log of housing prices.
Small p-values suggest that we should reject the null hypothesis which assumes cross-sectional independence
in the panel data of log pi,t.

B.2 Tests for rental growth rates

We conduct cross-sectional dependence tests for rental growth rates after running the fol-

lowing panel regression with city fixed effects,

xi,t = ζ i + η1xi,t−1 + η21(year ≥ 2008) + εi,t, (B.2)

where 1(year ≥ 2008) is a time dummy and εi,t is the error term. We report test results in

Table B.2. Small p-values suggest that there exists cross-sectional dependence in the panel

data of xi,t.
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Table B.2: Cross-sectional Dependence Tests for Rental Growth Rates

Pesaran’s Test Friedman’s Test
Test statistic 49.167 631.214
p-value 0.0000 0.0000

Notes: The table presents the statistics of the cross-sectional independence test for rental growth rates.
Small p-values suggest that we should reject the null hypothesis which assumes cross-sectional independence
in the panel data of xi,t.

B.3 Tests for the log of price-to-rent ratios

We conduct cross-sectional dependence tests for the log of price-to-rent ratios after running

the following panel regression with city fixed effects,

log yi,t = ωi + δ1 log yi,t−1 + δ21(year ≥ 2008) + ιi,t, (B.3)

where 1(year ≥ 2008) is a time dummy and ιi,t is the error term. We report test results in

Table B.3. Small p-values suggest that there exists cross-sectional dependence in the panel

data of log yi,t.

Table B.3: Cross-sectional Dependence Tests for Price-to-rent Ratios

Pesaran’s Test Friedman’s Test
Test statistic 124.606 1032.463
p-value 0.0000 0.0000

Notes: The table presents the statistics of the cross-sectional dependence test. Small p-values suggest that
we should reject the null hypothesis which assumes cross-sectional independence in the panel data of log yi,t.

C Proof of Proposition 3

Proof: We guess the law of motion of {zbt (ψt)} as follows,

zbt+1 (H) =

 zbt (H) exp
(
λHH0 + λ1 (xt+1 − x̄) + λ2 (xt − x̄)

)
, if ψt = H

zbt (L) exp
(
λLH0 + λ1 (xt+1 − x̄) + λ2 (xt − x̄)

)
, if ψt = L,

and

zbt+1 (L) =

 zbt (H) exp
(
λHL0 + λ1 (xt+1 − x̄) + λ2 (xt − x̄)

)
, if ψt = H

zbt (L) exp
(
λLL0 + λ1 (xt+1 − x̄) + λ2 (xt − x̄)

)
, if ψt = L,
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which depends on the state of the economy in the previous period.

Thus we have

Etz
b
t+1 (H) = zbt (L) exp

(
λLH0 + (λ2 + λ1ρ) (xt − x̄) +

1

2
(λ1σε)

2

)
,

and

Etz
b
t+1 (L) = zbt (L) exp

(
λLL0 + (λ2 + λ1ρ) (xt − x̄) +

1

2
(λ1σε)

2

)
,

for ψt = L. And

Etz
b
t+1 (H) = zbt (H) exp

(
λHH0 + (λ2 + λ1ρ) (xt − x̄) +

1

2
(λ1σε)

2

)
,

and

Etz
b
t+1 (L) = zbt (H) exp

(
λHL0 + (λ2 + λ1ρ) (xt − x̄) +

1

2
(λ1σε)

2

)
,

for ψt = H.

Thus

zbt (L) = βeθxt
(
πLHEtz

b
t+1 (H) + πLLEtz

b
t+1 (L)

)
,

and

zbt (H) = βeθxt
(
πHHEtz

b
t+1 (H) + πHLEtz

b
t+1 (L)

)
,

imply that

λ2 = −(λ1ρ+ θ),

βπLH exp

(
λLH0 +

1

2
(λ1σε)

2 + θx̄

)
+ βπLL exp

(
λLL0 +

1

2
(λ1σε)

2 + θx̄

)
= 1,

and

βπHH exp

(
λHH0 +

1

2
(λ1σε)

2 + θx̄

)
+ βπHL exp

(
λHL0 +

1

2
(λ1σε)

2 + θx̄

)
= 1.

These establish the proof.
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