Bubbles and House Price Dispersion in the United States during 1975-2017*

Yang Tang Nanyang Technological University

Ting Zeng Southwestern University of Finance and Economics

Shenghao Zhu University of International Business and Economics

Abstract

We investigate the rapid growth in the dispersion of housing prices across metropolitan statistical areas (MSAs) in the United States during 1975-2017. We first examine several explanations for this pattern, and find that it is difficult to fully explain it. Our econometric analyses show that the log of price-to-rent ratios follows a random walk process. We then set up a parsimonious asset-pricing island model. We find that the dispersion of fundamental housing prices grow too slow relative to that in data. Incorporating rational bubble solutions, our calibrated model can match the rapid growth in the dispersion of housing prices.

JEL classification: E30, G12, R30

Keywords: The cross-sectional dispersion of housing prices, excessive dispersion, bubbles

^{*}We thank Sungbae An, Wen-Tau Hsu, Ji Huang, Nicolas Jacquet, Kevin Lansing, Haoming Liu, Lin Ma, Thomas Sargent, Yifan Shen, Aloysius Siow, Jinli Zeng, Xin Zheng, and the anonymous referee for helpful discussions and comments. We also thank excellent research assistance from Chiyuan Gong, Hongyun Xiao, and Mengying Yang. All remaining errors are ours.

1 Introduction

The housing market in the United States during 1975-2017 is featured by a rapid growth in the dispersion of housing prices across metropolitan statistical areas (MSAs). Since housing typically takes up a major proportion of household net worth, fluctuations in housing prices can thus exert significant impacts on the macro-economy.¹ Hence, it is important to understand what drives the rapid rise in the dispersion of housing prices. In this paper we attempt to investigate this issue.

In Figure 1, we plot the cross-sectional coefficient of variation (CV) for housing prices in the United States during 1975-2017.² Our sample consists of a panel of 330 major MSAs in US. Figure 1 shows that there is a rapid increase in the dispersion of housing prices. The CV of housing prices in 1975 is 0.17, while this number reaches 0.55 in 2007. Despite a decline due to the 2007 financial crisis, the CV recovers quickly and restores its pre-crisis level by $2017.^3$

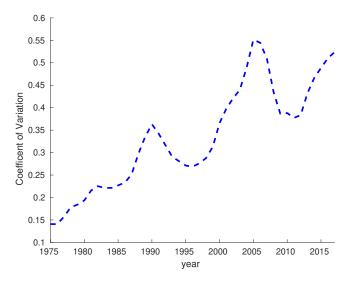


Figure 1: The Dispersion of Housing Prices: 1975-2017

Notes: The sample is based on data from a panel of 330 MSA. Housing prices are deflated by the consumer price index (excluding shelters). The data source during 1975-2007 is Van Nieuwerburgh and Weill (2010). We extend the remaining series using FMHPI. See Appendix A for details.

¹Wolff (2006), using the 2001 Survey of Consumer Finances (SCF) data, finds that housing (principal residence and other real estate) accounts for 38% of household assets.

 $^{^{2}}$ The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean.

³The CV computed in Figure 1 is unweighted. We also compute the weighted CV using housing units in each MSA as the weight. The pattern does not change.

We first examine several intuitively plausible explanations for patterns observed in Figure 1. These explanations emphasize the population concentration, the divergence in income growth rates across MSAs, or the divergence in income growth rates of top income groups across MSAs. Through investigations of these explanations we find that it is difficult to fully explain the rapid rise in the dispersion of housing prices during 1975-2017.

We then conduct econometric analyses of panel data. We empirically show that housing price processes are non-stationary and housing prices grow at different rates across MSAs. These findings can potentially lead to the pattern depicted in Figure 1. We find that rental growth rates are stationary. While different MSAs have different growth rates of housing prices, they have the same average growth rate of rental prices. This comparison hints that rentals are not the main reason of the rapid rise in the dispersion of housing prices. This comparison also encourages us to further investigate house price-to-rent ratios. Through a panel-data unit-root test we find that house price-to-rent ratios are also non-stationary.

To investigate further patterns in Figure 1 we set up a parsimonious asset-pricing island model. Each island corresponds to an MSA. We first study the fundamental solution of the asset pricing model, in which the fundamental housing prices are completely supported by rents while both the inter-temporal Euler equation and the transversality condition hold. Our calculations show that the cross-sectional CV of housing prices is larger than that of housing prices implied by the fundamental solution for each year during 1975-2017. Housing prices in the United States display excessive dispersion. Also we find that the growth in the dispersion of fundamental housing prices is too slow relative to the pattern in data.

Inspired by our empirical finding that the log of price-to-rent ratios follows a random walk process, we then investigate rational bubbles in our asset pricing model. Following Froot and Obstfeld (1991) and Lansing (2010), we generate bubble components of asset prices in the Lucas asset-pricing model by removing the transversality condition. Specifically, the stochastic growth component of the price-to-rent ratio causes housing price bubbles in our model. Bubble components can only be supported by speculations. Furthermore, our model can deliver explicit expressions for both fundamental and bubble components of the priceto-rent ratio. Our calibrated model with rational bubbles can simultaneously match four stylized facts in the United States during 1975-2017, the rapid growth in the dispersion of housing prices, a moderate increase in the dispersion of rental prices, the rising mean of housing prices, and the rising mean of rental prices. The stochastic growth component of the price-to-rent ratio in the bubble solution is the key mechanism, through which our model could match the rapid growth in the dispersion of housing prices. We also perform several robustness checks. Our model still successfully match housing price moments.

One may think that the stochastic growth component of the price-to-rent ratio eventually leads to explosive dispersion of housing prices. In an extension, we introduce an extrinsic uncertainty, which represents the confidence state, into the benchmark model. We construct a sunspot equilibrium in which bubbles eventually burst in the long-run. But before bubbles burst, there is a rapid growth in the dispersion of housing prices. Thus our paper also contributes to the literature of sunspot equilibria and asset pricing.

1.1 Related literatures

Our research is mainly related to two strands of literature: the housing price dispersion and asset bubbles.

Van Nieuwerburgh and Weill (2010) develops a dynamic spatial equilibrium model and calibrate productivity dispersion to match the increase of cross-sectional earnings dispersion across MSAs in the United States during 1975-2007.⁴ They show that the calibrated model can match the observed 30-year increase of housing price dispersion. Their framework relies on two main mechanisms, the labor mobility in response to local wage shocks and inelastic housing supply due to regulatory constraints. The housing price in Van Nieuwerburgh and Weill (2010) is equal to the expected present value of rents net of depreciation. And their model predicts that the magnitude of the increase in the dispersion of rental prices is similar to that of the increase in the dispersion of housing prices. However, this prediction is not supported by their data.

In Figure 2, we plot the CV of housing prices and that of rental prices in the United $\overline{^{4}\text{Eeckhout et al. (2014)}}$ use a spatial equilibrium model to investigate the skill distribution in cities.

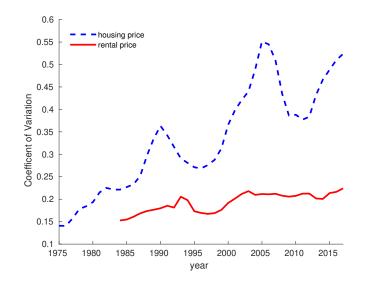


Figure 2: Housing Price Dispersion vs. Rental Price Dispersion

Notes: The sample is based upon a panel of 330 MSAs. Both housing prices and rental prices are deflated by the consumer price index (excluding shelters). The data source during 1975-2007 is Van Nieuwerburgh and Weill (2010). We extend the remaining series using FMHPI. See Appendix A for details.

States. Our panel of housing prices is unbalanced and contains 330 major MSAs during 1975-2017. But data of rental prices are only available during 1984-2017. Housing prices have much higher values of the CV than rental prices. This implies that distributions of housing prices are more dispersed than those of rental prices. Moreover, the growth of the CV of housing prices is more rapid than that of the CV of rental prices. The CV of housing prices in 1984 is 1.94 times that of rental prices, while this number reaches 2.75 in 2017.⁵

In this paper, we generate a bubble component of the house price-to-rent ratio. Our model is able to match the rapid rising dispersion of housing prices given a moderate increase in the CV of rental prices. While labor mobility plays a crucial role in Van Nieuwerburgh and Weill (2010), it is completely prohibited in our island economy. In our model rational bubbles caused by speculations within each island are the main driver of the increase in the dispersion of housing prices.

Gyourko et al. (2013) shows that the widening dispersion of housing prices can be explained by inelastic land supply in some individual-preferred locations combined with an increasing number of high-income households nationally. Their empirical results show that

 $^{^{5}}$ The CV computed in Figure 2 is unweighted. We also compute the weighted CV using housing units in each MSA as the weight. The pattern does not change.

the growing number of rich families in the United States during 1970-2000, can capture more than 80% of the excess growth of housing price in superstar cities in that period. However, due to the lack of data on local income distributions, it is difficult to empirically investigate the transmission mechanism from the change of the national income distribution to the rapid increase in the dispersion of housing prices.

Froot and Obstfeld (1991) generates intrinsic bubble, which only depends on dividends, in an asset-pricing model by removing the transversality condition. Intrinsic bubble can cause asset prices to overreact to changes in fundamentals, and thus can help to explain excess volatility of stock prices.⁶ Froot and Obstfeld (1991) assumes that the growth rate of dividends is independent and identically distributed over time. Lansing (2010) permits autocorrelation of the growth rate of dividends and generalizes the intrinsic rational bubble. He shows that the rational bubble component of the price-dividend ratio can evolve as a geometric random walk without drift, such that the mean of the bubble growth rate is zero. Granziera and Kozicki (2015) investigate whether expectations that are not fully rational can explain the evolution of the housing price index and the price-to-rent ratio in the United States during 1987-2011.

In terms of the agent's decision problem, our paper share the same framework as Lansing (2010) and Granziera and Kozicki (2015). Similar to these two papers, ours also makes use of the solution of the asset price other than the fundamental price itself. However, applications are different in these three papers. Lansing (2010) uses the model to study the price-dividend ratio of the stock market in the United States during 1871-2008. Granziera and Kozicki (2015) investigates the housing price index in the United States. Our paper exams the cross-sectional dispersion of house prices. In Granziera and Kozicki (2015) the near rational bubble solution, which produces a stationary price-to-rent ratio, replicates the moments of the price-to-rent ratio well.⁷ We find that the rational bubble solution, which produces a non-stationary price-to-rent ratio, generates the rapid rising dispersion of house prices given a moderate increase of rental price CV.

 $^{^{6}}$ See LeRoy (2004) for a survey about rational bubbles. Glaeser and Nathanson (2015) review recent literatures on housing bubbles.

⁷The data in Granziera and Kozicki (2015) include the remarkable downturn of the housing market in the United States after 2007. This could be one of the reasons why a stationary price-to-rent ratio fits their data.

The rest of this paper is organized as follows. Two plausible explanations for rising dispersion of housing prices are examined in Section 2. Empirical findings of housing prices and price-to-rent ratios are reported in Section 3. An asset-pricing island model is presented in Section 4. Section 5 contains calibration and simulation results. We extend the benchmark model to allow bubble burst in Section 6. Section 7 concludes the paper.

2 Alternative mechanisms

In this section we examine three possible explanations for the pattern displayed in Figure 1. Investigating of these explanations we find that it is difficult to fully explain the rapid rise in the dispersion of housing prices during 1975-2017.

Explanation 1. The increasing population concentration leads to the rise in the dispersion of housing prices.

If population becomes more concentrated, the dispersion of housing demand intensity should also increase consequently. This could, in turn, lead to the rise in the dispersion of housing prices. However, data do not support this hypothesis. Using the decennial census during 1970-2010 in the United States, we construct data of populations and housing units at the MSA level. When we use the CV to measure the population concentration, we indeed observe a declining trend in the dispersion of populations. We also find that the CV of housing units decreases over the period. The results are robust both in a balanced panel of 81 MSAs and in an unbalanced panel of 330 MSAs. We report these results in Table 1. The CV of populations steadily decreases from 1.15 (1.94) in 1970 to 0.90 (1.64) in 2010 in our sample of 81 (330) MSAs. Similarly, the CV of housing units steadily decreases from 1.20 (2.01) in 1970 to 0.86 (1.56) in 2010 in our sample of 81 (330) MSAs.

Explanation 2. The divergence in income growth rates across MSAs leads to the rise in the dispersion of housing prices.

When average family incomes in different MSAs increase at different rates, housing prices could potentially have different growth rates. Thus we could observe a rapid increase in the dispersion of housing prices across MSAs. We use data from Gyourko et al. (2013) to test this mechanism. We calculate growth rates of the housing price and of the average family income

CV of Population		CV of Housing Units		
Year	balanced	unbalanced	balanced	unbalanced
1970	1.1461	1.9366	1.1991	2.0110
1980	1.0085	1.7452	1.0144	1.7595
1990	0.9605	1.7046	0.9226	1.6586
2000	0.9310	1.6740	0.8825	1.5970
2010	0.9020	1.6357	0.8552	1.5608

Table 1: The CV of Populations and Housing Units

Notes: Numbers are from authors' computations. See Appendix A for details of our data.

between 1970 and 2000 in each MSA. To investigate the divergence in income growth rates, we define superstar MSAs and non-superstar MSAs as in Gyourko et al. (2013).⁸ There are 21 superstar MSAs and 296 non-superstar MSAs.⁹ In Table 2 we report the mean growth rate of the housing price and the mean growth rate of the average family income within the group of superstar MSAs and those means within the group of non-superstar MSAs. Comparing the column of superstar MSAs with that of non-superstar MSAs, we find that the moderate difference of growth rates of average incomes cannot explain the large difference of growth rates of housing prices.¹⁰

⁸In Gyourko et al. (2013), an MSA is a superstar in a particular year of 1970, 1980, 1990, or 2000, if it has high demands for houses and low elasticity of housing supply over the prior two decades. They calculate the growth rates of housing prices and housing units over four time periods: 1950-1970, 1960-1980, 1970-1990, and 1980-2000. They identify high-demand MSAs by checking whether the sum of the growth rates of housing prices and housing price growth rate-to-housing unit growth rate is in the top decile of the sample. An MSA has time-invariant superstar status if it is a superstar in any two decades between 1970 and 2000 (See pp.179-180 of Gyourko et al. (2013)). In Table 2 we use time-invariant superstar status of Gyourko et al. (2013).

⁹The MSA definitions of Gyourko et al. (2013) are based on 1990 county boundaries.

¹⁰The divergence in the income growth rates of top income groups across MSAs could also lead to the rise in the dispersion of housing prices. The fast growth of incomes of the rich people in some particular MSAs could cause the rapid growth of the housing prices in these MSAs. However, it is difficult for us to test this hypothesis due to the limited information on the income distribution within an MSA. The major challenge is top-coding. For example, incomes in the Census data and in the American Community Survey suffer from the top-coding problem. This leads to the difficulty to estimating the top incomes at the MSA level. Gyourko et al. (2013) uses the number of families in different income bins as the proxy of the income distribution at the MSA level. But this method cannot help us to estimate the income growth rates of the top income groups in MSAs.

	Superstar MSAs	Non-superstar MSAs
Housing Prices	131.80%	63.52%
	(0.805)	(0.325)
Average Family Incomes	42.51%	32.13%
	(0.173)	(0.126)

Table 2: Growth Rates of Housing Prices and of Average Family Incomes: 1970-2000

Notes: Numbers are from authors' computations. The data source is Gyourko et al. (2013). Terms in parentheses are standard deviations.

3 Empirical findings

In this section we conduct panel-data tests on housing prices, rental growth rates, and house price-to-rent ratios. For these empirical tests we directly obtain the data from Van Nieuwerburgh and Weill (2010) for the period of 1984-2007 and construct the data series from the same data sources for the later period 2008-2017.¹¹

We find that housing prices have a unit root, and housing prices grow at different rates across MSAs. These findings are consistent with the rapid rise in the dispersion of housing prices. We also find that rental growth rates are stationary. While different MSAs have different growth rates of housing prices, they have the same average growth rate of rental prices. These observations imply that rental prices may not be able to explain the rapid rise in the dispersion of housing prices. To separate the impact of rental prices on housing prices, we further investigate house price-to-rent ratios. We find that house price-to-rent ratios are also non-stationary. Inspired by this empirical finding we set up a theoretical model in Section 4, where rational bubbles can generate non-stationary price-to-rent ratios.

3.1 Housing prices

In this subsection we first use panel data to show that housing prices have a unit root. Then we show that housing prices grow at different rates across MSAs.

Let $p_{i,t}$ denote the housing price of MSA *i* in year *t*. To have a consistent sample for

¹¹The nominal home value of each MSA in Van Nieuwerburgh and Weill (2010) during 1975-2007 is constructed through combining the median single-family home value from the 2000 Census with the Freddie Mac Conventional Mortgage Home Price Index (CMHPI). From February 2011, Freddie Mac stopped publishing the CMHPI index, and replaced the CMHPI with the (Freddie Mac House Price Index) FMHPI as its externally published house price index. To address the discontinuity in housing price series, we add a time period dummy into regression equations whenever possible and report test statistics for different sample periods.

housing prices and rental prices, we use the balanced panel including 81 MSAs for the period during 1984-2017.¹² To show the stationarity of housing prices, we need to perform a unitroot test of log $p_{i,t}$ in our balanced panel. The conventional panel-data unit-root tests, such as Im-Pesaran-Shin (IPS) test, rely on the assumption that there does not exist cross-sectional dependence. However, as several cross-sectional independence tests for log $p_{i,t}$ shown in Appendix B.1, we find that the panel data series of housing prices are not independent crosssectionally. To accomplish the task, we therefore proceed to the cross-sectionally augmented IPS (CIPS) test developed by Pesaran (2007). We conduct the CIPS test against the null hypothesis that the log of housing prices carries a unit root. The cross-sectionally augmented Dickey-Fuller (CADF) regression takes the following form,

$$\Delta \log p_{i,t} = g_i + h_i \log p_{i,t-1} + m_i \overline{\log p_{t-1}} + n_i \Delta \overline{\log p_t} + v_{it}, \tag{1}$$

where Δ is the first-difference operator and $\log p_t$ is the cross-sectional average of $\log p_{i,t}$. The CIPS test generates CADF statistics for each individual MSA and computes the CIPS test statistic which is the simple cross-sectional average of individual CADF statistics. We report our CIPS test statistics and critical values at 10%, 5%, and 1% significance levels for different sample periods in Table 3. We find that the CIPS test statistic in the overall sample period, -1.694, is substantially smaller than the critical values at all three levels in absolute terms.¹³ Therefore, we cannot reject the null hypothesis which assumes the existence of a unit root in the panel data of $\log p_{i,t}$.

After the confirmation of non-stationarity in housing price dynamics, one might be still unclear about the reason for the rising cross-sectional difference over time as shown in Figure 1. More specifically, do different MSAs have the same average growth rate of housing prices? Next, we attempt to answer the above question by conducting a joint hypothesis test after

¹²The housing price data are available during 1975-2017 while the rental price data are only available after 1984. Therefore, we choose the sample period 1984-2017 for all empirical tests.

¹³The CIPS test statistics for the overall sample period 1984-2017 and the early period 1984-2007 are smaller than these three critical values in absolute terms. The test statistic for the later period 2008-2017 is marginally higher than the critical values, which is mainly due to a short-term decline of housing prices in the aftermath of 2007 financial crisis. The test statistic for a period after 2013 is significantly below all critical values as the housing prices start to recover.

Sample Period	Test Statistic	Critical Value 10%	Critical Value 5%	Critical Value 1%
1984-2017	-1.694	-2.020	-2.080	-2.170
1984 - 2007	-1.129	-2.010	-2.070	-2.170
2008-2017	-2.372	-2.010	-2.110	-2.290

Table 3: A Panel Unit-root Test for Housing Prices

Notes: The table presents CIPS test statistics and critical values for 10%, 5%, and 1% significance levels for different sample periods. The CIPS test statistics for the overall sample period 1984-2017 and the early period 1984-2007 are smaller than these three critical values in absolute terms. The test statistic for the later period 2008-2017 is marginally higher than the critical values due to a short-term decline of housing prices in the aftermath of 2007 financial crisis. The test statistic for a period after 2013 start be significantly below all critical values as the housing prices recover. Therefore, we generally cannot reject the null hypothesis which assumes that there exists a unit root in the panel data of log $p_{i,t}$.

running a panel regression of the growth rates with city fixed effects,

$$\log p_{i,t} = \chi_i + \eta_1 \log p_{i,t-1} + \vartheta_t Y ear_t + \eta_2 \mathbf{1}(year \ge 2008) + e_{i,t}, \tag{2}$$

where $Year_t$ is the year dummy, $\mathbf{1}(year \ge 2008)$ is the time dummy for new sample period, and $e_{i,t}$ is the error term. Therefore, χ_i represents the time-invariant city fixed effect in MSA *i*. A joint hypothesis test against the null hypothesis, $H_0: \chi_1 = \chi_2 = ... = \chi_I$, can be conducted. Table 4 shows that the chi-squared test statistic 209.29 is larger than its critical value at the 1% significance level, 112.33. And the *p*-value is 0.0001. As test results clearly reject the null hypothesis, we know that housing prices grow at different rates across MSAs. These findings are consistent with the rapid rise in the dispersion of housing prices.

Table 4: Test Statistics for City Fixed Effects in Housing Prices

Chi-square Statistic	<i>p</i> -value
209.29	0.0001

Notes: The table presents the statistics of the joint hypothesis test against the null hypothesis, $H_0: \chi_1 = \chi_2 = \ldots = \chi_I$. The chi-squared test statistic 209.29 is larger than its critical value at the 1% significance level, 112.329. And the *p*-value is 0.0001. Thus test results reject the null hypothesis. Housing prices grow at different rates across MSAs.

3.2 Rental growth rates

We also conduct a panel-data unit-root test on rental growth rates. Unlike housing prices, we find that rental growth rates are stationary. More importantly, we show that different MSAs have the same average growth rate of rental prices.

Let $x_{i,t}$ denote the rental growth rate of MSA *i* in year *t*. In Appendix B.2, we find that there exists cross-sectional dependence in the panel data of rental growth rates. We also conduct the CIPS panel unit-root test for rental growth rates $x_{i,t}$ with the CADF regression takes a similar form as (1). Similar to subsection 3.1, the null hypothesis assumes that rental growth rates have a unit root. We report our CIPS test statistics in Table 5. We find that the CIPS test statistics for different sample periods are larger than critical values at 10%, 5%, and 1% significance levels in absolute terms. Therefore, we reject the null hypothesis that there exists a unit root in the panel data of $x_{i,t}$.

 Table 5: A Panel Unit-root Test for Rental Growth Rates

Period	Test Statistics	Critical Value 10%	Critical Value 5%	Critical Value 1%
1984-2017	-5.227	-2.020	-2.080	-2.170
1984 - 2007	-4.318	-2.010	-2.070	-2.170
2008-2017	-3.061	-2.010	-2.110	-2.290

Notes: The table presents CIPS test statistics and critical values for 10%, 5%, and 1% significance levels for different sample periods. The CIPS test statistics for all three sample periods are larger than these three critical values in absolute terms. The corresponding p-values are close to zero. Therefore, we reject the null hypothesis that there exists a unit root in the panel data of $x_{i,t}$.

Knowing that rental growth rates are stationary, we propose the following panel regression with city fixed effects for the panel of 81 MSAs during 1984-2017,

$$x_{i,t} = \zeta_i + \eta_1 x_{i,t-1} + \varpi_t Y ear_t + \eta_2 \mathbf{1}(year \ge 2008) + \varepsilon_{i,t}, \tag{3}$$

where $Year_t$ is the year dummy, $\mathbf{1}(year \ge 2008)$ is the time dummy for new sample period, and $\varepsilon_{i,t}$ is the error term. We also omit year fixed effects in an alternative specification. The estimate of the autocorrelation term η_1 is 0.057 in the specification without year fixed effects and insignificantly -0.002 in the specification with year fixed effects. To test whether different MSAs have the same average growth rate of rental prices, we conduct a joint hypothesis test against the null hypothesis, $H_0: \zeta_1 = \zeta_2 = \ldots = \zeta_I$. Table 6 shows that the chi-squared test statistics, 41.78 and 33.00, are smaller than the critical value at the 10% significance level, 96.58. Thus the test results in both specifications cannot reject the null hypothesis. Different MSAs have the same average growth rate of rental prices.

	Chi-square Statistic	p-value
With Year Fixed Effects	41.78	0.9999
Without Year Fixed Effects	33.00	1.0000

 Table 6: Test Statistics for City Fixed Effects in Rental Growth Rates

Notes: The table presents the statistics of the joint hypothesis test against the null hypothesis, $H_0: \zeta_1 = \zeta_2 = \ldots = \zeta_I$. The chi-squared test statistics in the specifications with and without year fixed effects, 41.78 and 33.00, are smaller than the critical value at the 10% significance level, 96.58. The corresponding p-values are close to 1. Thus the test results in both specifications cannot reject the null hypothesis. Different MSAs have the same average growth rate of rental prices.

3.3 House price-to-rent ratios

In this subsection we conduct a panel-data unit-root test on house price-to-rent ratios and show that they are non-stationary. We also find that different MSAs have the same average growth rate of price-to-rent ratios. These results may not be surprising given the dynamic movements of housing prices and rental prices in previous subsections.

Let $d_{i,t}$ be the rental price of MSA *i* in period *t*, and denote $y_{i,t} \equiv p_{i,t}/d_{i,t}$ as the price-torent ratio of MSA i in period t. In Appendix B.3 we show that there exists cross-sectional dependence in the panel data of house price-to-rent ratios as well. Therefore, we conduct the CIPS panel unit-root test for house price-to-rent ratios, $\log y_{i,t}$, in the same fashion as shown for housing prices and rental growth rates. The null hypothesis assumes that the log of price-to-rent ratios has a unit root. We report our CIPS test statistics and critical values at 10%, 5%, and 1% significance levels in Table 7. We find that the CIPS test statistic for the overall sample, -2.017, is smaller than critical values at 5% and close to the critical value of the 1% level in absolute terms. Therefore, we accept the null hypothesis at 5%significance level and marginally accept the null hypothesis at 1% significance level. For the early period 1984-2007, the test statistic is substantially smaller than these three critical values in absolute terms which clearly leads to an acceptance of the null hypothesis. The test statistic for the later period 2008-2017 is only marginally higher than the 1% critical values. The behavior of house price-to-rent ratio is mainly driven by housing prices, which experience a short-term decline after 2007 financial crisis. As the housing prices start to recover since 2013, house price-to-rent ratios soon become nonstationary again. Therefore, we can generally conclude an existence of unit-root in the house price-to-rent ratio in our overall sample period.

Period	Test Statistics	Critical Value 10%	Critical Value 5%	Critical Value 1%
1984-2017	-2.017	-2.020	-2.080	-2.170
1984 - 2007	-1.577	-2.010	-2.070	-2.170
2008-2017	-2.297	-2.010	-2.110	-2.290

Table 7: A Panel Unit-root Test for House Price-to-rent Ratios

Notes: The table presents CIPS test statistics and critical values for 10%, 5%, and 1% significance levels. The CIPS test statistic is close to the critical value of the 1% level in absolute terms during the overall sample period, but is insignificant during 1984-2007. The test statistic for the later period 2008-2017 is only marginally higher than the 1% critical values, and become insignificant again after 2013 as housing prices recover from the 2007 financial crisis. Therefore in general, we cannot reject the null hypothesis that there exists a unit root in the panel data of log $y_{i,t}$.

To test whether different MSAs have the same average growth rate of price-to-rent ratios, we conduct a joint hypothesis test after running a panel regression of the growth rates with city fixed effects,

$$\log y_{i,t} = \omega_i + \eta_1 \log y_{i,t} + \xi_t Y ear_t + \eta_2 \mathbf{1}(y ear \ge 2008) + \iota_{i,t}, \tag{4}$$

where $Year_t$ is the year dummy, $\mathbf{1}(year \ge 2008)$ is the time dummy for new sample period, and $\iota_{i,t}$ is the error term. A joint hypothesis test against the null hypothesis, $H_0: \omega_1 = \omega_2 = \dots = \omega_I$, is conducted. Table 8 shows that the chi-squared test statistic 228.38 is larger than its critical value at the 1% significance level, 112.33. And the *p*-value is 0.0000. Thus test results suggest a rejection of the null hypothesis. Different MSAs have distinctive average growth rates of price-to-rent ratios.

Table 8: Test Statistics for City Fixed Effects in House Price-to-rent Ratios

Chi-square Statistic	<i>p</i> -value
228.38	0.0000

Notes: The table presents the statistics of the joint hypothesis test against the null hypothesis, $H_0: \omega_1 = \omega_2 = \ldots = \omega_I$. The chi-squared test statistic 228.38 is larger than its critical value at the 1% significance level, 112.33. And the *p*-value is 0.0000. Thus test results imply a rejection to the null hypothesis. Different MSAs have distinctive average growth rates of price-to-rent ratios.

4 An island model

We present our theoretical framework in this section. Time is discrete and infinite with t = 0, 1, 2... The economy is divided into I > 1 segmented islands. Each island is populated with infinitely-lived agents of measure 1. Agents are not allowed to move across islands. Agents on all islands share identical preferences. On each island there is an asset-pricing problem as in Lucas Jr (1978).

Houses are the only asset in the economy. An agent can only purchase houses on the island where she lives. Each unit of house delivers a stream of stochastic rents. Let c_t denote the consumption in period t and $U(c_t)$ be the period utility function. A representative agent on island i chooses a sequence of consumption and a sequence of housing units to maximize the expected present value of her lifetime utility,¹⁴

$$E_0 \sum_{t=0}^{\infty} \beta^t U(c_t) \,,$$

where $\beta \in (0, 1)$ denotes the time discount factor. The agent's budget constraint in period t can be written as

$$c_t + p_t s_t = (p_t + d_t) s_{t-1}$$
, with $c_t, s_t > 0$,

where s_t represents the unit of houses purchased, p_t is the housing price, and d_t is the stochastic housing rent in period t. The growth rate of housing rents, $x_t \equiv \log (d_t/d_{t-1})$, is assumed to follow the process,

$$x_t - \bar{x} = \rho \left(x_{t-1} - \bar{x} \right) + \varepsilon_t, \ \varepsilon_t \sim N\left(0, \sigma_{\varepsilon}^2 \right), \tag{5}$$

where $|\rho| < 1$. We assume that each island in our model has one unit of houses.¹⁵

¹⁴Since no mobility across islands is allowed, we omit the subscript for island i to simplify the notation.

¹⁵Favara and Song (2014) show that housing prices not only have different trends in different cities, but also display heterogeneous short-run dynamics. They use a user-cost model to study how dispersed information affects the equilibrium housing price. They also assume that housing supply is inelastic in each MSA and agents are not allowed to move across MSAs. Thus each MSA in their model can also be viewed as a closed island economy.

From the first order conditions of the agent's problem, we have

$$p_{t} = \beta E_{t} \left[\frac{U'(c_{t+1})}{U'(c_{t})} \left(p_{t+1} + d_{t+1} \right) \right].$$
(6)

When there is no technology to store housing rents, and the housing supply is normalized to be 1 in each island, we have $c_t = d_t$ for all t. The individual utility function takes a constant relative risk aversion (CRRA) form, i.e. $U(c_t) = \frac{(c_t)^{1-\alpha}-1}{1-\alpha}$, where the parameter $\alpha > 0$ is the coefficient of relative risk aversion. Thus from equation (6) we have

$$p_t = \beta E_t \left[\left(\frac{d_{t+1}}{d_t} \right)^{-\alpha} \left(p_{t+1} + d_{t+1} \right) \right].$$
(7)

Let us denote by $y_t \equiv p_t/d_t$ the house price-to-rent ratio in period t. Together with the definition of x_t , equation (7) is equivalent to

$$y_t = \beta E_t \left[(y_{t+1} + 1) \exp\left[(1 - \alpha) x_{t+1} \right] \right].$$
(8)

Following Lansing (2010), we let $z_t \equiv \beta (y_t + 1) \exp [(1 - \alpha)x_t]$, which is a composite variable that depends on both the growth rate of rents and the price-to-rent ratio. Equation (8) leads to

$$z_{t} = \beta \left[E_{t} \left(z_{t+1} \right) + 1 \right] \exp \left[(1 - \alpha) x_{t} \right].$$
(9)

Equation (8) also implies that $y_t = E_t(z_{t+1})$.

4.1 The fundamental solution

In this subsection, we investigate the fundamental solution of price-to-rent ratios and its implications for housing prices.

Under the transversality condition,

$$\lim_{T \to \infty} E_t \left[\beta^T \frac{U'(c_{t+T})}{U'(c_t)} p_{t+T} \right] = 0, \tag{10}$$

the iteration of equation (6) leads to the following housing price equation,

$$p_{t} = E_{t} \sum_{j=1}^{\infty} \left[\beta^{j} \frac{U'(c_{t+j})}{U'(c_{t})} d_{t+j} \right],$$

which is the counterpart of equation (10) in Van Nieuwerburgh and Weill (2010). The fundamental housing price can be completely supported by rents.

Let z_t^f be the fundamental solution to equation (9), i.e. the solution satisfying both equation (9) and the transversality condition. We have the following proposition from Lansing (2010) on an approximate analytical expression of the fundamental solution to equation (9):

Proposition 1 The fundamental solution to equation (9) can be approximated by

$$z_t^f = \exp\left[a_0 + a_1 \rho \left(x_t - \bar{x}\right)\right],$$
(11)

where a_1 solves

$$a_{1} = \frac{1 - \alpha}{1 - \rho \beta \exp\left[(1 - \alpha)\bar{x} + \frac{1}{2}a_{1}^{2}\sigma_{\varepsilon}^{2}\right]},$$
(12)

and

$$a_0 = \log\left[\frac{\beta \exp\left[(1-\alpha)\,\bar{x}\right]}{1-\beta \exp\left[(1-\alpha)\,\bar{x} + \frac{1}{2}a_1^2\sigma_{\varepsilon}^2\right]}\right],\tag{13}$$

provided $\beta \exp\left[\left(1-\alpha\right)\bar{x}+\frac{1}{2}a_1^2\sigma_{\varepsilon}^2\right] < 1.$

Proof See Proposition 1 of Lansing (2010).

From Proposition 1 we have the fundamental solution of the price-to-rent ratio,

$$y_t^f = E_t \left(z_{t+1}^f \right) = \exp\left(a_0 + a_1 \rho \left(x_t - \bar{x} \right) + \frac{1}{2} a_1^2 \sigma_{\varepsilon}^2 \right).$$
(14)

Formula (14) implies that y_t^f is stationary. In Section 3.3 we show that the house price-torent ratio process is non-stationary in data. Thus the fundamental solution of housing prices cannot match data. We will introduce a non-stationary part to the price-to-rent ratio in the model.

4.2 Rational bubble solutions

The fundamental solution to equation (9), z_t^f , satisfies the transversality condition. There are other solutions to equation (9) which do not satisfy the transversality condition.

We consider a bubble component of z_t, z_t^b . Let

$$z_t = z_t^f + z_t^b. (15)$$

Substituting equation (15) into equation (9) yields

$$z_t^b = \beta E_t \left(z_{t+1}^b \right) \exp\left[(1 - \alpha) \, x_t \right].$$
(16)

We define the bubble component of the price-to-rent ratio, y_t^b , as $y_t^b \equiv \frac{1}{\beta} z_t^b \exp\left[-(1-\alpha) x_t\right]$, such that equation (16) implies that $y_t^b = E_t \left(z_{t+1}^b\right)$. Thus we have

$$\underbrace{E_t\left(z_{t+1}\right)}_{y_t} = \underbrace{E_t\left(z_{t+1}^f\right)}_{y_t^f} + \underbrace{E_t\left(z_{t+1}^b\right)}_{y_t^b},$$

which implies that any y_t obtained by $y_t = y_t^f + y_t^b$, satisfies equation (8). The following proposition can be obtained from Lansing (2010).

Proposition 2 There exists a continuum of intrinsic rational bubbles of the form

$$z_t^b = z_{t-1}^b \exp\left[\lambda_0 + \lambda_1 \left(x_t - \bar{x}\right) + \lambda_2 \left(x_{t-1} - \bar{x}\right)\right], \text{ with } z_0^b > 0,$$

where λ_0 , λ_1 , and λ_2 satisfies the following two conditions,

$$\lambda_2 = -\left(\rho\lambda_1 + 1 - \alpha\right),\tag{17}$$

and

$$\frac{1}{2}\lambda_1^2 \sigma_{\varepsilon}^2 + (1-\alpha)\,\bar{x} + \log\left(\beta\right) + \lambda_0 = 0. \tag{18}$$

Proof See Proposition 2 of Lansing (2010).

We have multiple equilibria since we have three unknowns λ_0 , λ_1 , and λ_2 for equations (17) and (18).

The equations above have two roots of λ_1 . The solution with negative λ_0 will eventually shrink to zero, while the solution with positive drift implies the price-to-rent ratio will grow unboundedly.

We thus have the bubble component of the price-to-rent ratio,

$$y_t^b = y_{t-1}^b \exp\left[\lambda_0 + (\lambda_1 - (1 - \alpha))(x_t - \bar{x}) + (\lambda_2 + 1 - \alpha)(x_{t-1} - \bar{x})\right], \text{ with } y_0^b > 0.$$
(19)

Formula (19) shows that y_t^b has stochastic growth rates. Thus the price-to-rent ratio,

$$y_t = y_t^f + y_t^b,$$

can easily generate an increasing dispersion. This is the key mechanism, through which our model could match the rapid growth in the dispersion of housing prices. Through calibrating the model, we illustrate this mechanism in Subsection 5.3. Even after we pick values for λ_0 , λ_1 , and λ_2 in formula (19), we still need finding the initial y_0^b . In our quantitative analyses, we calibrate y_0^b for each MSA from data.

5 Quantitative analyses

In this section, we calculate housing prices in the island economy. Each island corresponds to an MSA. We intend to investigate whether our model can generate the rapid growth in the dispersion of housing prices. In the following, we first discuss parameterizations and calibration strategies. After we calculate housing prices with only the fundamental solution, we add bubbles to our results. We also conduct some robustness checks.

5.1 Calibrations

The model is calibrated to the housing market in the United States during 1984-2017. Each period in the model corresponds to one year in data. Our sample contains a panel of 330

MSAs. We pin down the rental growth process by running the following panel regression in the sample,

$$x_{i,t} = \kappa + \rho x_{i,t-1} + \varepsilon_{i,t}, \ \varepsilon_{i,t} \sim N(0, \sigma_{\varepsilon}^2).$$
⁽²⁰⁾

The estimation yields $\hat{\rho} = 0.132$, which is statistically significantly different from zero. Equation (20) also implies that the estimate of the average rental growth rate \bar{x} is equal to $\hat{\kappa}/(1-\hat{\rho})$. We report these estimated parameter values in Table 9.

Model	Parameter	Value
Autocorrelation coefficient	ρ	0.132
Mean of x	$ar{x}$	0.00369
Standard deviation of the error term	$\sigma_{arepsilon}$	0.0404

Table 9: Parameter Values of the Rental Growth Process

Notes: The values of parameters in the table are estimated by running a panel regression.

The time discount factor, β , is chosen to match the mean housing value obtained in the rational bubble scenario during 1984-2017. β is estimated to be 0.968, which is also consistent with the value commonly found in the literature. α is the coefficient of relative risk aversion, and we calibrate it to match the growth factor of housing price CV obtained from the rational bubble scenario during 1984-2017.¹⁶ We summarize these parameters in Table 10.

Table 10: Benchmark Parameterization

Model	Parameter	Value
Time discount factor	β	0.968
Risk aversion coefficient	α	1.020

Notes: we choose the value of β to match the mean home value during 1984-2017, and the value of α to match the growth factor of housing value CV in 1984 to that in 2007.

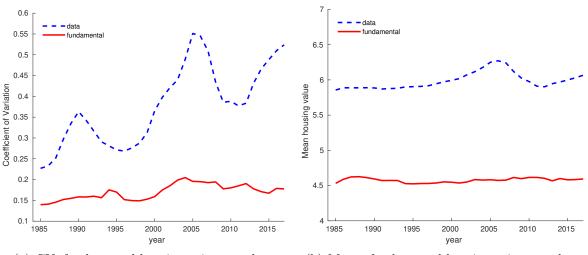
5.2 The fundamental solution and excessive dispersion

We first calculate fundamental housing prices for each MSA. As in Section 4.1, we can approximate the fundamental solution of the price-to-rent ratio by using equation (14). We

¹⁶In Section 5.4, we try different combinations of α and β .

determine values of a_1 and a_0 by formulae (12) and (13). Given our benchmark parameterization, we find $a_1 = -0.23$ and $a_0 = 3.45$.

After we obtain housing prices for 330 MSAs, we can calculate the cross-sectional mean and CV of housing prices for each year during 1984-2017. In Figure 3, we plot the mean and the CV of the simulated fundamental housing prices and their counterparts in data.



(a) CV: fundamental housing prices vs. data (b) Mean: fundamental housing prices vs. data

Figure 3: Fundamental Housing Prices

As depicted in Figure 3, simulated fundamental housing prices fail to match either the mean or the CV in data. Fundamental housing prices cannot replicate the rapid increase in the dispersion of housing prices across MSAs.

Panel (a) of Figure 3 also shows that the cross-sectional CV of housing prices is larger than that of housing prices implied by the fundamental solution for each year during 1984-2017. Shiller (1981) and LeRoy and Porter (1981) show that time series of shock prices exhibit excess volatility, i.e. the CV of time series of stock prices is larger than the CV of the expected present value of future real dividends. Bulkley et al. (1996) study the crosssectional dispersion of individual company share prices. They find that stock prices of a large sample of firms in the United States are excessively dispersed compared with ex post rational stock prices calculated from subsequent dividend realizations. Through our calculations, we

Notes: We approximate the analytical solution for the fundamental price-to-rent ratio according to equation (14). We then obtain the housing price by multiplying the price-to-rent ratio with the corresponding rental price in each MSA. The y-axis of panel (b) is in the logarithm scale.

find excessive dispersion for housing prices in the United States.

5.3 Results with a rational bubble

In Section 5.2 we find that fundamental housing prices cannot match the rapid rise in the dispersion of housing prices across MSAs. Then we add a bubble component to the house price-to-rent ratio. Thus we have the house price-to-rent ratio, $y_{i,t}$,

$$y_{i,t} = y_{i,t}^f + y_{i,t}^b,$$

for $i = 1, 2, \dots I$.

We have calculated the fundamental component of the price-to-rent ratio $\{y_{i,t}^f\}$ in Section 5.2. Now we compute the bubble component of the price-to-rent ratio $\{y_{i,t}^b\}$ by using equation (19).

Given the initial value of the fundamental component of the price-to-rent ratio $y_{i,0}^{f}$ for each MSA, we can derive the initial value of the bubble component of the price-to-rent ratio $y_{i,0}^{b}$ by

$$y_{i,0}^b = y_{i,0} - y_{i,0}^f$$

where $y_{i,0}$ is the house price-to-rent ratio in year 1984 in data.

Applying equation (19) we also need to know λ_0 , λ_1 , and λ_2 . We pin down λ_1 and λ_2 from equations (17) and (18). We calibrate the drift term λ_0 to minimize the distance between the average growth rate of housing prices in the model and their counterparts in the panel of 330 MSAs during 1985-2017. λ_0 solves

$$\min_{\lambda_0} \sum_{t=1985}^{2017} \left[\frac{\sum_{i=1}^{I} (p_{i,t}^m / p_{i,t-1}^m - 1)}{I} - \frac{\sum_{i=1}^{I} (p_{i,t}^d / p_{i,t-1}^d - 1)}{I} \right]^2$$

where $p_{i,t}^d$ is the housing price in MSA *i* at time *t* in data and $p_{i,t}^m$ is the corresponding housing price in the model. We find $\lambda_0 = 0.030$, $\lambda_1 = 1.305$, and $\lambda_2 = 0.028$.

After we calculate $y_{i,t}$, we then multiply $y_{i,t}$ with its corresponding rental price, to generate the housing price. To calculate the cross-sectional mean and CV of housing prices, we assign an equal weight to each MSA for benchmark results. But the results are fairly robust when we use housing units as weights. In Figure 4, we plot benchmark results together with their counterparts in data.

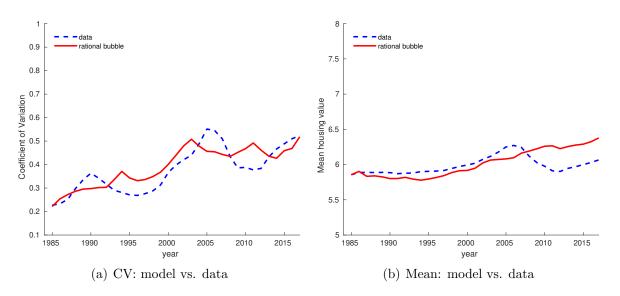


Figure 4: Benchmark Results of Housing Prices: 1984-2017

Notes: Our calculations incorporate a panel of 330 MSAs. Housing prices are plotted during 1984-2007. We apply true rental price data during the same periods. The y-axis of panel (b) is in the logarithm scale.

Evidently, our calculated series of the mean and the CV of housing prices match data well. When we use the CV to measure the dispersion of housing prices, data show a rapid increase in the CV of housing prices during 1984-2017. The CV in data increases from 0.227 in 1984 to 0.524 in 2017. Since the growth factor of CV is one of our targets, so our model exactly mimics the depicted pattern. The correlation between the model generated CV and the data counter-part reaches 0.818, and the mean square error is as small as 0.0031.

Our model cannot match the decline in the home value as well as its CV after 2005 trigged by the global financial crisis. This is mainly because rental price in the data do not seem to experience a decline in the majority of the MSAs as shown in Figure 5. In addition, our model predicts a less smooth movements of CV over time in comparison with the data, since housing value pattern are entirely driven by the rental prices, and this seems to suggest that certain policies/factors that are only effective in housing market but not in the rental market.

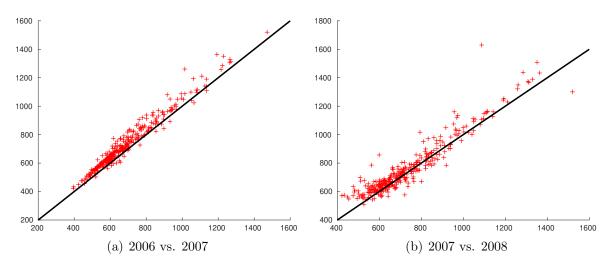


Figure 5: Rental Price Comparisons during 2006-2008

Notes: We plot rental prices of each MSA in two consecutive years near the period of global financial crisis.

5.4 Robustness

In this section, we perform several robustness exercises. Firstly, we evaluate how well our model can match data prior to 1984, in which we do not have data on rental prices and we estimate them using simulated method of moments. Secondly, we also simulate housing prices using the entire simulated rental prices, while we use actual rental data after 1985 in the benchmark simulation. Finally, we change certain calibration targets and repeat the benchmark simulation exercises. We find that our results are robust for all these alternatives.

Calculations during 1975-2017 The theoretical framework in Section 4 enables us to calculate the house price-to-rent ratio. We then obtain the housing price by multiplying the price-to-rent ratio with the corresponding rental price in each MSA. Thus we need the rental price in each MSA. However, due to the limited availability of rental data, we estimate rental prices during 1975-1983. In Figure 6, we present a snapshot of the kernel density for rental price data during 1984-2007.

The patterns in Figure 6 suggests that rental prices across MSAs follow a log-normal distribution. But means and variances potentially change over time. Therefore, we assume

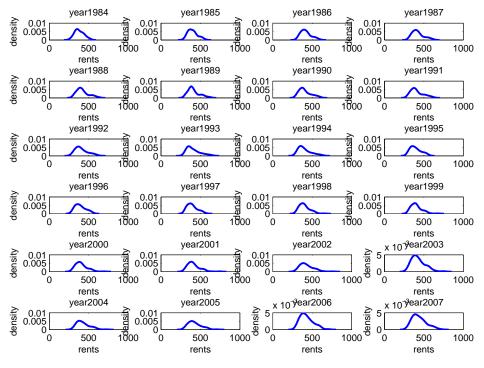


Figure 6: Rental Price Distributions: 1984-2007

Notes: The figure presents a snapshot of the kernel density for rental price data during 1984-2007.

that rental prices in year 1974 and year 1975 follow a joint log-normal distribution $\ln N(\mu, \Sigma)$, where $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ denotes the average rental prices in 1974 and in 1975 respectively. And $\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix}$ is the variance-covariance matrix, whose diagonal elements represent the variances of rental prices in 1974 (σ_1^2) and in 1975 (σ_2^2) respectively. The off-diagonal element (σ_{12}) captures the correlation between rental prices in 1974 and those in 1975. Given this assumed joint distribution of rental prices in 1974 and 1975, we can use the rental growth process (20) to simulate rental prices during 1976-2017. We estimate $\mu_1, \mu_2, \sigma_1, \sigma_2$, and σ_{12} using the simulated method of moments (SMM).¹⁷ We jointly estimate their values to minimize the distance between means and variances of simulated rental prices during 1984-2017 and their counterparts in data. We report estimated parameter values in Table 11.

We randomly draw rental prices of 330 MSAs in 1974 and in 1975 from the log-normal

¹⁷We impose the Holder's inequality restriction: $\sigma_{12} \leq \sigma_1 \sigma_2$.

Parameter	Value
μ_1	1.23
μ_2	1.17
σ_1	0.101
σ_2	0.124
σ_{12}	0.0029

Table 11: SMM Estimation Results

Notes: The values of parameters in the table are estimated by using the simulated method of moments (SMM).

distribution specified in Table 11. These enable us to compute the initial rental growth rate for each MSA in 1975. Given the initial distribution $\{x_{i,0}\}$, we can then simulate a panel of $\{x_{i,t}\}$ during 1976-1984 using equation (20). Then we can back out rental prices during 1976-1984. However, our simulated rental prices during 1975-1984 are "anonymous." In order to connect the simulated rental prices to the rental data in each MSA, we label simulated rental prices such that the simulated rentals in 1984 obey the same rank as the 1984 rental data.

We estimate rental prices during 1975-1983 in the benchmark simulation, because we do not have rental data for that period. To make sure that our results are not driven by the estimation strategy, we now only calculate housing prices using rental prices from data without any estimation. As rental data are available after 1984, we calculate housing prices after 1985, when we can obtain initial rental growth rates, $\{x_{i0}\}$.¹⁸ We calculate the house price-to-rent ratio $y_{i,t} = y_{i,t}^f + y_{i,t}^b$ for $i = 1, 2, \dots I$ and $t = 1985, 1986, \dots 2017$. Then we multiply $\{y_{i,t}\}$ with the corresponding rental price in each MSA to obtain the housing price. Results are presented in Figure 7. The CV in data increases from 0.141 in 1975 to 0.524 in 2017. Our model predicts that the CV rises from 0.141 in 1975 to 0.560 in 2017.¹⁹ In addition, the correlation between the simulated CV and the data series is 0.914, and the mean square error is 0.0044 as shown in Table 12. We also replicate the rapid rise in the CV of housing prices during this period.

¹⁸We use the value of λ_0 as in our benchmark simulation. There λ_0 is calibrated to minimize the distance between the average growth rate of housing prices in the model and their counterparts in data during 1985-2017.

¹⁹In 1975 our model has the same CV as in data since we use housing prices in 1975 in data as initial housing prices in robustness exercise.

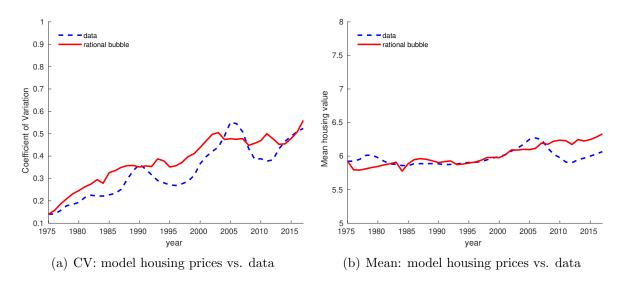


Figure 7: Robustness Results: 1975-2017 using SMM

Notes: We estimated rental prices during 1974-1983 using simulated method of moments. The y-axis of panel (b) is in the logarithm scale.

Purely simulated rental prices In the previous simulation, we use actual rental price data after 1985. Since rental prices are important inputs for our simulations, we now inject the entire simulated rental price panel into the economy instead, and evaluate how estimation results may vary accordingly. Results are reported in Figure 8. The CV in data increases from 0.141 in 1975 to 0.524 in 2017. Our model predicts that the CV rises from 0.141 in 1975 to 0.527 in 2017. In addition, the correlation between the simulated CV and the data series is 0.911, and the mean square error is 0.0035 as shown in Table 12. We also generate the rapid growth in the CV of housing prices during this period.

Alternative Targets In our benchmark calibration, the initial price-to-rental ratio, y_0 , is chosen to match the initial housing value in year 1984. In the following exercise, we instead choose the value of $\{y_{i0}\}$ so that the distance between the simulated $\{y_{it}\}$ and their datacounterpart is minimized, and the results are reported in Figure 9. The CV increases from 0.221 in 1984 to 0.519 in 2017. The correlation between data and model generated CV is 0.823, and the mean square error is 0.0030.

In the following exercises, we re-calibrate the value of β to match the max-min housing

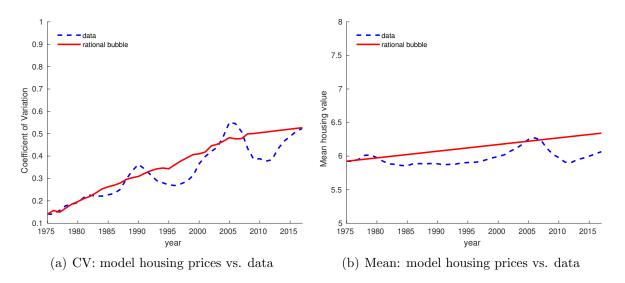


Figure 8: Robustness Results: All Rental Prices are Simulated

Notes: In this robustness check, the entire sequence of rental prices during 1975-2017 is from simulations. The y-axis of panel (b) is in the logarithm scale.

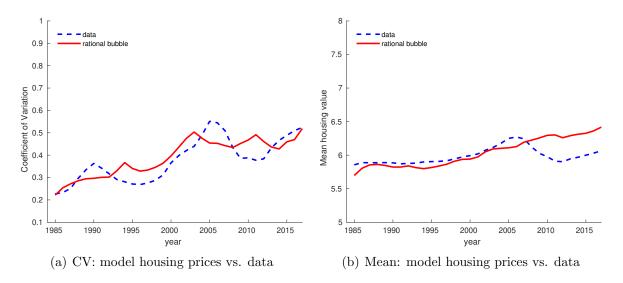


Figure 9: Robustness Results: Alternative initial value of price-to-rental ratio

Notes: In this exercise, we re-calibrate the value of $y_{i,0}$. The y-axis of panel (b) is in the logarithm scale.

value ratio during 1984-2017.²⁰ We also change the value of α to be 1.5, which is a value commonly set in the literature. The results are reported in Figure 10. The CV increases from 0.221 in 1984 to 0.583 in 2017. The correlation between data and model generated CV is 0.814, and the mean square error is 0.0031.

²⁰Housing price reaches the maximum level in year 2005, and minimum level in year 1984.

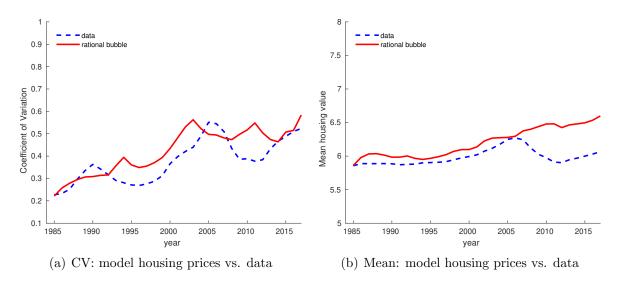


Figure 10: Robustness Results: Alternative value of α and β

Notes: In this exercise, we re-calibrate the value of β and use a different value of α as a robustness check as well. The y-axis of panel (b) is in the logarithm scale.

Table 12: Summary statistics between model generated CV and data

Model	Correlation	MSE
Benchmark	0.818	0.0031
SMM	0.914	0.0044
SMM with simulated rents	0.911	0.0035
different initial y_{i0}	0.823	0.0030
different α and β	0.814	0.0031

Notes: This table presents the correlations and mean squared errors (MSE) of summary statistics generated by the rational bubble model and those in actual data. Both correlations and MSE show that the rational bubble model highly fit the actual data.

6 An extension: sunspots and bubble burst

It is widely documented that the incidence of the 2007 global financial crisis was caused by the burst of housing bubbles in the United States. It seems that there are different regimes of housing price dynamics. Since the price-to-ratio has a stochastic growth component in our benchmark model, and thus it eventually leads to explosive dispersion of housing prices. In this section, we present an extension of the benchmark model. In the extension, bubbles eventually burst in the long-run. But before bubbles burst, there is a rapid growth in the dispersion of housing prices.

To model regime switching of housing price dynamics, we introduce an extrinsic uncer-

tainty into our benchmark model. Kashiwagi (2014) finds a rational expectations sunspot equilibrium in a model based on search and matching theory. His model can generate a stable path of rental prices and a rapid growth of housing prices. However, he does not investigate the implication of a sunspot equilibrium on the cross-sectional dispersion of housing prices. As in Kashiwagi (2014), the extrinsic uncertainty in our model represents the confidence state, which could be either the high (H) state or the low (L) state. This sunspot event is unrelated to fundamentals of the economy.

Equations (17) and (18) are two key equations generating the price-to-rent ratio in our rational bubble economy. We need these two equations to pin down three parameters $\{\lambda_0, \lambda_1, \lambda_2\}$, and this allows us one degree of freedom. In quantitative analyses of our benchmark model, we calibrate λ_0 . In this section, we instead let the parameter λ_0 take four possible values, which depend on confidence states of the current and the next period. We denote by λ_0^{ij} $(i, j \in \{H, L\})$ these four values. Superscripts of λ_0^{ij} mean that the confidence state in the current period is *i* and the confidence state in the next period is *j*. We also denote by ψ_t the confidence state in period *t*. Let $z_t^b(\psi_t)$ represent z_t^b in the confidence state ψ_t . Let $\theta \equiv 1 - \alpha$. The following proposition characterizes the sunspot equilibrium.

Proposition 3 There exists a continuum of rational bubbles of the form,

$$z_{t+1}^{b}(H) = \begin{cases} z_{t}^{b}(H) \exp\left(\lambda_{0}^{HH} + \lambda_{1}\left(x_{t+1} - \bar{x}\right) + \lambda_{2}\left(x_{t} - \bar{x}\right)\right), & \text{if } \psi_{t} = H \\ z_{t}^{b}(L) \exp\left(\lambda_{0}^{LH} + \lambda_{1}\left(x_{t+1} - \bar{x}\right) + \lambda_{2}\left(x_{t} - \bar{x}\right)\right), & \text{if } \psi_{t} = L, \end{cases}$$

and

$$z_{t+1}^{b}(L) = \begin{cases} z_{t}^{b}(H) \exp\left(\lambda_{0}^{HL} + \lambda_{1}(x_{t+1} - \bar{x}) + \lambda_{2}(x_{t} - \bar{x})\right), & \text{if } \psi_{t} = H \\ z_{t}^{b}(L) \exp\left(\lambda_{0}^{LL} + \lambda_{1}(x_{t+1} - \bar{x}) + \lambda_{2}(x_{t} - \bar{x})\right), & \text{if } \psi_{t} = L. \end{cases}$$

The confidence state follows a Markov process, and π_{ij} represents the transition probability from the state *i* in the current period to the state *j* in the next period. Constants $\lambda_0^{HH} > 0$, $\lambda_0^{HL} < 0$, $\lambda_0^{LL} < 0$, $\lambda_0^{LH} >> 0$, λ_1 , λ_2 , π_{HH} , π_{HL} , π_{LL} , and π_{LH} satisfy

$$\lambda_2 = -\left(\lambda_1 \rho + \theta\right),\tag{21}$$

$$\beta \pi_{LH} \exp\left(\lambda_0^{LH} + \frac{1}{2} \left(\lambda_1 \sigma_{\varepsilon}\right)^2 + \theta \bar{x}\right) + \beta \pi_{LL} \exp\left(\lambda_0^{LL} + \frac{1}{2} \left(\lambda_1 \sigma_{\varepsilon}\right)^2 + \theta \bar{x}\right) = 1, \quad (22)$$

$$\beta \pi_{HH} \exp\left(\lambda_0^{HH} + \frac{1}{2} \left(\lambda_1 \sigma_{\varepsilon}\right)^2 + \theta \bar{x}\right) + \beta \pi_{HL} \exp\left(\lambda_0^{HL} + \frac{1}{2} \left(\lambda_1 \sigma_{\varepsilon}\right)^2 + \theta \bar{x}\right) = 1, \quad (23)$$

$$\pi_{HH} + \pi_{HL} = 1, \tag{24}$$

and

$$\pi_{LL} + \pi_{LH} = 1. \tag{25}$$

Proof See appendix C.

Thus in a sunspot equilibrium we have

$$z_t(H) = z_t^f + z_t^b(H) \,,$$

and

$$z_t(L) = z_t^f + z_t^b(L) \,,$$

where z_t^f is given by equation (11).

Introducing a sunspot event into the benchmark model, we greatly expand our degree of freedom. In total we have ten unknowns and five equations. From equations (22) and (23) we can express λ_0^{LH} and λ_0^{HL} as

$$\lambda_0^{LH} = \log\left(\frac{1 - \beta \pi_{LL} \exp\left(\lambda_0^{LL} + \frac{1}{2} \left(\lambda_1 \sigma_{\varepsilon}\right)^2 + \theta \bar{x}\right)}{\beta \pi_{LH}}\right) - \frac{1}{2} \left(\lambda_1 \sigma_{\varepsilon}\right)^2 - \theta \bar{x},$$

and

$$\lambda_0^{HL} = \log\left(\frac{1 - \beta \pi_{HH} \exp\left(\lambda_0^{HH} + \frac{1}{2}\left(\lambda_1 \sigma_{\varepsilon}\right)^2 + \theta \bar{x}\right)}{\beta \pi_{HL}}\right) - \frac{1}{2}\left(\lambda_1 \sigma_{\varepsilon}\right)^2 - \theta \bar{x}.$$

A sufficient condition to guarantee $\lambda_0^{HL} < 0$ is

$$1 - \beta \pi_{HH} \exp\left(\lambda_0^{HH} + \frac{1}{2} \left(\lambda_1 \sigma_{\varepsilon}\right)^2 + \theta \bar{x}\right) < \beta \pi_{HL}.$$

This could help us to generate a scenario of bubble burst.

We illustrate a scenario of bubble burst in a simple numerical exercise. We first pick up values for some parameters in Table 13.

Parameter	Value
λ_1	0.5
π_{LH}	0.1
π_{HL}	0.09
λ_0^{LL}	-0.2
$\lambda_0^{\check{H}H}$	0.2
v	

Table 13: Parameterization in the Model with Sunspots

Notes: The values of parameters in the table are predetermined.

Then we solve λ_0^{LH} , λ_0^{HL} and λ_2 from equations (21), (22), and (23). We concentrate on the sample of 330 MSAs here. The initial year is still 1984. The process of the rental price growth rate and initial rental price distributions are the same as in quantitative analyses of the benchmark model. Moreover, we set confidence states of all 81 MSAs in 1975 to the state *L*. In each year after 1975, different MSAs may have different realizations of confidence states, even though the confidence state in each MSA follows the same Markov process. We simulate the model economy for 1,000 periods. Through simulations, we calculate the crosssectional mean and CV of housing prices. These are reported in Figure 11.

7 Conclusion

We investigate the rapid growth in the dispersion of housing prices across MSAs in the United States during 1975-2017. We first examine several intuitively plausible explanations for this pattern, and find that it is difficult to fully explain it.

We then conduct econometric analyses of panel data. We empirically show that housing prices are non-stationary and housing prices grow at different rates across MSAs. We find that rental growth rates are stationary. While different MSAs have different growth rates of housing prices, they have the same average growth rate of rental prices. Through a panel unit-root test we also find that the log of price-to-rent ratios follows a random walk process.

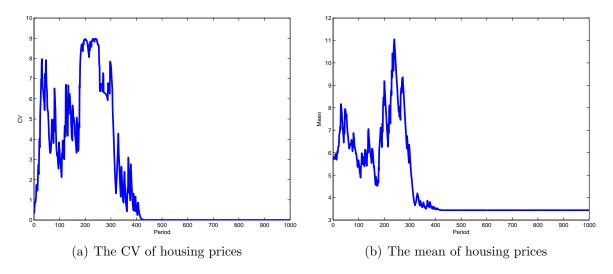


Figure 11: Simulations of a Sunspot Equilibrium

To investigate further the rapid growth in the dispersion of housing prices, we set up a parsimonious asset-pricing island model. Each island corresponds to an MSA. We first study the fundamental solution of the asset pricing model. Our calculations show that the cross-sectional CV of housing prices is larger than that of housing prices implied by the fundamental solution for each year during 1975-2017. Housing prices in the United States display excessive dispersion. Also we find that the growth in the dispersion of fundamental housing prices is too slow relative to the pattern in data. Incorporating rational bubble solutions, our calibrated model can simultaneously match four stylized facts in the United States during 1975-2017, the rapid growth in the dispersion of housing prices, the moderate increase in the dispersion of rental prices, the rising mean of housing prices, and the rising mean of rental prices.

One of the important mechanisms that we do not take into account explicitly in this paper is the credit channel of houses. Kiyotaki and Moore (1997) show that collateral channel of assets could amplify the volatility of their prices. Brumm et al. (2015) find that borrowing against collateral substantially increases the return volatility of long-lived assets. Gelain et al. (2015) investigate different impacts of shifting lending standards and movements in the mortgage interest rate, on the boom-bust cycle of the housing market in the United States

Notes: We simulate sunspot events for 330 MSAs from year 1984. The confidence states of all 81 MSAs in 1975 are set as L, but may have different realizations afterwards even if they follow the same Markov process. We simulate the model economy for 1,000 periods. The y-axis of panel (b) is in the logarithm scale.

during 1995-2012. Favilukis et al. (2016) find that a relaxation of financing constraints leads to a large boom in house prices. We could follow these researches to investigate the implication of the credit channel on the cross-sectional dispersion of housing prices. We leave this for our future research.

References

- Brumm, Johannes, Michael Grill, Felix Kubler, and Karl Schmedders, "Collateral requirements and asset prices," *International Economic Review*, 2015, 56 (1), 1–25.
- Bulkley, George, Andy Snell, and Ian Tonks, "Excessive stock price dispersion: A regression test of cross-sectional volatility," LSE Financial Markets Group Working Paper 246, 1996.
- Eeckhout, Jan, Roberto Pinheiro, and Kurt Schmidheiny, "Spatial sorting," Journal of Political Economy, 2014, 122 (3), 554–620.
- Favara, Giovanni and Zheng Song, "House price dynamics with dispersed information," Journal of Economic Theory, 2014, 149, 350–382.
- Favilukis, Jack, Sydney Ludvigson, and Stijn Van Nieuwerburgh, "Macroeconomic Implications of Housing Wealth, Housing Finance and Limited Risk Sharing in Equilibrium," Journal of Political Economy, Forthcoming, 2016.
- Froot, Kenneth A and Maurice Obstfeld, "Intrinsic bubbles: The case of stock prices," The American Economic Review, 1991, pp. 1189–1214.
- Gelain, Paolo, Kevin J Lansing, and Gisle James Natvik, "Explaining the boombust cycle in the US housing market: A reverse-engineering approach," *Federal Reserve Bank of San Francisco Working Paper 2015-02*, 2015.
- Glaeser, Edward L. and Charles G. Nathanson, "Housing Bubbles," in Gilles Duranton, J Vernon Henderson, and William Strange, eds., Handbook of Regional and Urban Economics, Vol. 5B, Amsterdam: North Holland, 2015, chapter 11, pp. 702–751.

- Granziera, Eleonora and Sharon Kozicki, "House price dynamics: Fundamentals and expectations," *Journal of Economic Dynamics and Control*, 2015, 60, 152–165.
- Gyourko, Joseph, Christopher Mayer, and Todd Sinai, "Superstar cities," American Economic Journal: Economic Policy, 2013, 5 (4), 167–99.
- Hoyos, Rafael E De, Vasilis Sarafidis et al., "Testing for cross-sectional dependence in panel-data models," *Stata Journal*, 2006, 6 (4), 482.
- Jr, Robert E Lucas, "Asset prices in an exchange economy," Econometrica: Journal of the Econometric Society, 1978, pp. 1429–1445.
- Kashiwagi, Masanori, "Sunspots and self-fulfilling beliefs in the US housing market," *Review of Economic Dynamics*, 2014, 17 (4), 654–676.
- Kiyotaki, Nobuhiro and John Moore, "Credit cycles," Journal of Political Economy, 1997, 105 (2), 211–248.
- Lansing, Kevin J, "Rational and near-rational bubbles without drift," The Economic Journal, 2010, 120 (549), 1149–1174.
- LeRoy, Stephen F, "Rational exuberance," *Journal of Economic literature*, 2004, 42 (3), 783–804.
- and Richard D Porter, "The present-value relation: Tests based on implied variance bounds," *Econometrica*, 1981, 49 (3), 555–574.
- Nieuwerburgh, Stijn Van and Pierre-Olivier Weill, "Why has house price dispersion gone up?," *The Review of Economic Studies*, 2010, 77 (4), 1567–1606.
- Pesaran, M Hashem, "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, 2007, 22 (2), 265–312.
- Shiller, Robert, "Do stock prices move too much to be justified by subsequent Changes in dividends?," The American Economic Review, 1981, 71 (3), 421–436.

Wolff, Edward N, "Changes in household wealth in the 1980s and 1990s in the United States," in Edward N Wolff, ed., International Perspectives on Household Wealth, Cheltenham: Edward Elgar, 2006, chapter 4, pp. 107–150.

Appendices

A Data sources and variable definitions

The metropolitan statistical area (MSA): The metropolitan statistical area (MSA) in the paper is based on 2006 MSA definitions. To account for size differences among MSAs, we follow Van Nieuwerburgh and Weill (2010) to replace 11 largest MSAs by their constituent metropolitan divisions (MSAD). Our primary sample consists of 330 MSAs during 1975-2017. We map those MSAs in our sample in Figure A.1. Note that Danville, VA belongs to the unbalanced sample of 330 MSAs during 1975-2007. However, it was demoted to a Micropolitan Statistical Area in 2013 due to core urban area's population falling below 50,000. Therefore, we only have 329 MSAs in the 2008-2017 sub-sample for the unbalanced panel.

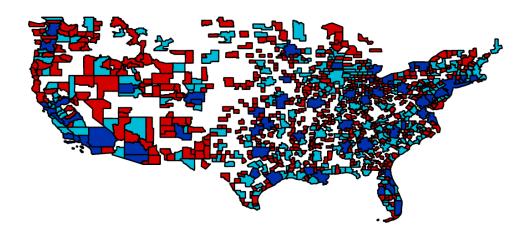


Figure A.1: MSAs in our balanced and unbalanced panel

Notes: Missing: red; Unbalanced panel: light blue; Balanced panel: dark blue

Housing prices: We obtain nominal housing price data during 1975-2007 directly from Van Nieuwerburgh and Weill (2010). The nominal home value of each MSA is constructed through combining the median single-family home value from the 2000 Census with the Freddie Mac Conventional Mortgage Home Price Index (CMHPI), a repeated-sale housing price index. In 1975 housing prices are only available in 81 MSAs. Data of more and more

MSAs have become available over time. By 1996 all 330 MSAs have housing price data.²¹ We deflate nominal home values into 1983 dollars using regional non-housing price indices, which are also taken from Van Nieuwerburgh and Weill (2010).

We want to extend the sample after 2007 from the same data source. However, since February 2011, Freddie Mac stopped publishing the CMHPI index, and replaced the CMHPI with the Freddie Mac House Price Index (FMHPI) as its externally published house price index. The CMHPI is no longer in production or available to the public. The two national indices differ in two important ways. First, the national FMHPI is a weighted average of state indices, whereas the national CMHPI was a weighted average of nine Census region indices. Second, the FMHPI uses Freddie Mac portfolio share weights to construct the national index, whereas the CMHPI used census region counts of single-family housing. The FMHPI also differs from the CMHPI in its treatment of refinance transactions. The Classic CMHPI included refinance transactions in the estimation but did not account for disparities between appraisals for refinance purposes and purchases. The FMHPI includes these transactions and uses statistical methods to account for the possibility that appraisal values might systematically differ from purchase prices. The purchase-only CMHPI excluded refinance transactions.

Therefore, we have to adopt FMHPI data as an alternative data series for housing prices after 2007. We aggregate the monthly FMHPI non-seasonally adjusted data into the annual series and map the current MSAs carefully into the 2006 MSA definitions. We also deflate nominal home values during 2008-2017 into 1983 dollars using regional non-housing price indices, which are constructed from the same data sources as Van Nieuwerburgh and Weill (2010).

Rental prices: We take nominal rental data during 1984-2007 directly from Van Nieuwerburgh and Weill (2010). We deflate nominal rentals into 1983 dollars using regional non-housing price indices, which are provided by Van Nieuwerburgh and Weill (2010). We use rental data in all 330 MSAs during 1984-2007.

For the nominal rents after 2007, we follow the data sources and methods in the online appendix of Van Nieuwerburgh and Weill (2010) to construct the data series. We first adopt

 $^{^{21}\}mathrm{See}$ Appendix D.2 of Van Nieuwerburgh and Weill (2010) for more details.

the annual or semiannual rent of shelter indices of 25 large metropolitan areas from the Bureau of Labor Statistics (BLS), which correspond to 48 out of our 330 MSA regions. We then extrapolate the nominal rents after 2007 based on rent indices and nominal rents in 2007. For the remaining MSAs, we use rental data from the Fair Market Rents database (FMR), published annually by the U.S. Department of Housing and Urban Development (HUD). We aggregate the county-level FMR rental data into the MSA level according to 2006, weighted by 2000 Census population in each county. As also noted by Van Nieuwerburgh and Weill (2010), one problem with the FMR data is that the reported rent percentile changes over time. We adjusted the reported 40th percentile rent level to the median level using the method proposed by Van Nieuwerburgh and Weill (2010). Note that Van Nieuwerburgh and Weill (2010) use the median gross rent from the 2000 Census to obtain the level for each regions. We also deflate nominal rent prices into 1983 dollars using regional non-housing price indices, which are constructed from the same data sources as Van Nieuwerburgh and Weill (2010).

Non-Housing Price Indices: We use non-housing price indices to deflate the nominal housing prices and nominal rental prices into 1983 dollars. For the non-housing price indices during 1975-2007, we directly adopt those from Van Nieuwerburgh and Weill (2010). For the indices after 2007, we construct from the same data sources as Van Nieuwerburgh and Weill (2010) to ensure consistency. We first adopt the annual, semiannual, or monthly consumer price indices of services less rent of shelter for available metropolitan areas from the Bureau of Labor Statistics (BLS). For remaining MSAs, we assign the regional ex-shelter price indices published by the BLS according to the city population and Census region. Note that Van Nieuwerburgh and Weill (2010) use 2000 cost-of-living index (COLI) data to obtain the cross-sectional variation in the price level. We extrapolate the non-housing price indices in later years by matching the growth of price based on the 2007 price indices in the two sub-sample periods.

Population: The original data are from Table 24 of *Population and Housing Unit Counts, United States Summary: 2010.* The United States Census Bureau releases five waves of population data from 1970 to 2010 at the county level. We collect data and aggregate them to the MSA level according to 2006 MSA definitions.

Housing units: The original data are from Table 24 of *Population and Housing Unit Counts, United States Summary: 2010.* The United States Census Bureau releases five waves of housing unit data from 1970 to 2010 at the county level. We collect data and aggregate them to the MSA level according to 2006 MSA definitions.

B Cross-sectional independence tests

To test the cross-sectional independence in panel data of y_{it} , we run a panel regression,

$$y_{it} = \alpha_i + \beta' \mathbf{x}_{it} + u_{it}, \ i = 1, ..., I \text{ and } t = 1, ..., T,$$

where \mathbf{x}_{it} is a vector of regressors, β is a vector of coefficients, and α_i represents time-invariant fixed effects. The error term u_{it} is assumed to be independent and identically distributed (*i.i.d.*) along time.

The null hypothesis assumes that error terms are independent across i. Thus we have

$$H_0: \rho_{ij} = \rho_{ji} = cor(u_{it}, u_{jt}) = 0 \text{ for } i \neq j,$$

versus

$$H_1: \rho_{ij} = \rho_{ji} \neq 0$$
 for some $i \neq j$,

where ρ_{ij} is the product-moment correlation coefficient of u_{it} and u_{jt} ,

$$\rho_{ij} = \rho_{ji} = \frac{\sum_{t=1}^{T} u_{it} u_{jt}}{\left(\sum_{t=1}^{T} u_{it}^2\right)^{1/2} \left(\sum_{t=1}^{T} u_{jt}^2\right)^{1/2}}.$$

Our panel data have the property of short T and large I. Thus we conduct Pesaran's test and Friedman's test for the cross-sectional dependence.²²

 $^{^{22}\}mathrm{See}$ De Hoyos et al. (2006) for more details.

B.1 Tests for the log of housing prices

We conduct the cross-sectional dependence tests for the log of housing prices after running the following panel regression with city fixed effects,

$$\log p_{i,t} = \chi_i + \phi_1 \log p_{i,t-1} + \phi_2 \mathbf{1}(year \ge 2008) + e_{i,t}, \tag{B.1}$$

where $1(year \ge 2008)$ is a time dummy and $e_{i,t}$ is the error term. We report test results in Table B.1. Small *p*-values suggest that there exists cross-sectional dependence in the panel data of log $p_{i,t}$.

Table B.1: Cross-sectional Dependence Tests for Housing Prices

	Pesaran's Test	Friedman's Test
Test statistic	165.746	1377.986
<i>p</i> -value	0.0000	0.0000

Notes: The table presents the statistics of the cross-sectional dependence test for the log of housing prices. Small *p*-values suggest that we should reject the null hypothesis which assumes cross-sectional independence in the panel data of $\log p_{i,t}$.

B.2 Tests for rental growth rates

We conduct cross-sectional dependence tests for rental growth rates after running the following panel regression with city fixed effects,

$$x_{i,t} = \zeta_i + \eta_1 x_{i,t-1} + \eta_2 \mathbf{1}(year \ge 2008) + \varepsilon_{i,t}, \tag{B.2}$$

where $\mathbf{1}(year \ge 2008)$ is a time dummy and $\varepsilon_{i,t}$ is the error term. We report test results in Table B.2. Small *p*-values suggest that there exists cross-sectional dependence in the panel data of $x_{i,t}$.

	Pesaran's Test	Friedman's Test
Test statistic	49.167	631.214
p-value	0.0000	0.0000

 Table B.2: Cross-sectional Dependence Tests for Rental Growth Rates

Notes: The table presents the statistics of the cross-sectional independence test for rental growth rates. Small *p*-values suggest that we should reject the null hypothesis which assumes cross-sectional independence in the panel data of $x_{i,t}$.

B.3 Tests for the log of price-to-rent ratios

We conduct cross-sectional dependence tests for the log of price-to-rent ratios after running the following panel regression with city fixed effects,

$$\log y_{i,t} = \omega_i + \delta_1 \log y_{i,t-1} + \delta_2 \mathbf{1}(y_{ear} \ge 2008) + \iota_{i,t}, \tag{B.3}$$

where $1(year \ge 2008)$ is a time dummy and $\iota_{i,t}$ is the error term. We report test results in Table B.3. Small *p*-values suggest that there exists cross-sectional dependence in the panel data of $\log y_{i,t}$.

Table B.3: Cross-sectional Dependence Tests for Price-to-rent Ratios

	Pesaran's Test	Friedman's Test
Test statistic	124.606	1032.463
<i>p</i> -value	0.0000	0.0000

Notes: The table presents the statistics of the cross-sectional dependence test. Small *p*-values suggest that we should reject the null hypothesis which assumes cross-sectional independence in the panel data of $\log y_{i,t}$.

C Proof of Proposition 3

Proof: We guess the law of motion of $\{z_{t}^{b}(\psi_{t})\}$ as follows,

$$z_{t+1}^{b}(H) = \begin{cases} z_{t}^{b}(H) \exp\left(\lambda_{0}^{HH} + \lambda_{1}\left(x_{t+1} - \bar{x}\right) + \lambda_{2}\left(x_{t} - \bar{x}\right)\right), \text{ if } \psi_{t} = H\\ z_{t}^{b}(L) \exp\left(\lambda_{0}^{LH} + \lambda_{1}\left(x_{t+1} - \bar{x}\right) + \lambda_{2}\left(x_{t} - \bar{x}\right)\right), \text{ if } \psi_{t} = L, \end{cases}$$

and

$$z_{t+1}^{b}(L) = \begin{cases} z_{t}^{b}(H) \exp\left(\lambda_{0}^{HL} + \lambda_{1}(x_{t+1} - \bar{x}) + \lambda_{2}(x_{t} - \bar{x})\right), \text{ if } \psi_{t} = H \\ z_{t}^{b}(L) \exp\left(\lambda_{0}^{LL} + \lambda_{1}(x_{t+1} - \bar{x}) + \lambda_{2}(x_{t} - \bar{x})\right), \text{ if } \psi_{t} = L, \end{cases}$$

which depends on the state of the economy in the previous period.

Thus we have

$$E_t z_{t+1}^b \left(H \right) = z_t^b \left(L \right) \exp\left(\lambda_0^{LH} + \left(\lambda_2 + \lambda_1 \rho \right) \left(x_t - \bar{x} \right) + \frac{1}{2} \left(\lambda_1 \sigma_\varepsilon \right)^2 \right),$$

and

$$E_t z_{t+1}^b(L) = z_t^b(L) \exp\left(\lambda_0^{LL} + (\lambda_2 + \lambda_1 \rho) \left(x_t - \bar{x}\right) + \frac{1}{2} \left(\lambda_1 \sigma_\varepsilon\right)^2\right),$$

for $\psi_t = L$. And

$$E_t z_{t+1}^b(H) = z_t^b(H) \exp\left(\lambda_0^{HH} + (\lambda_2 + \lambda_1 \rho) \left(x_t - \bar{x}\right) + \frac{1}{2} \left(\lambda_1 \sigma_\varepsilon\right)^2\right),$$

and

$$E_t z_{t+1}^b \left(L \right) = z_t^b \left(H \right) \exp\left(\lambda_0^{HL} + \left(\lambda_2 + \lambda_1 \rho \right) \left(x_t - \bar{x} \right) + \frac{1}{2} \left(\lambda_1 \sigma_{\varepsilon} \right)^2 \right),$$

for $\psi_t = H$.

Thus

$$z_{t}^{b}(L) = \beta e^{\theta x_{t}} \left(\pi_{LH} E_{t} z_{t+1}^{b}(H) + \pi_{LL} E_{t} z_{t+1}^{b}(L) \right),$$

and

$$z_{t}^{b}(H) = \beta e^{\theta x_{t}} \left(\pi_{HH} E_{t} z_{t+1}^{b}(H) + \pi_{HL} E_{t} z_{t+1}^{b}(L) \right),$$

imply that

$$\lambda_2 = -(\lambda_1 \rho + \theta),$$

$$\beta \pi_{LH} \exp\left(\lambda_0^{LH} + \frac{1}{2} (\lambda_1 \sigma_{\varepsilon})^2 + \theta \bar{x}\right) + \beta \pi_{LL} \exp\left(\lambda_0^{LL} + \frac{1}{2} (\lambda_1 \sigma_{\varepsilon})^2 + \theta \bar{x}\right) = 1,$$

and

$$\beta \pi_{HH} \exp\left(\lambda_0^{HH} + \frac{1}{2} \left(\lambda_1 \sigma_{\varepsilon}\right)^2 + \theta \bar{x}\right) + \beta \pi_{HL} \exp\left(\lambda_0^{HL} + \frac{1}{2} \left(\lambda_1 \sigma_{\varepsilon}\right)^2 + \theta \bar{x}\right) = 1.$$

These establish the proof.