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Abstract

We study dynamic optimal taxation in a class of economies with private information.

We first use a variational approach to characterize the optimal nonlinear tax schedule in

the stationary equilibrium and find the role of the endogenous distribution in the optimal

long-run tax. We then introduce the aggregate shock to the heterogeneous agent model

and employ stochastic control in infinite dimensions to solve the optimal nonlinear tax

schedule in a Krusell-Smith economy. The paper also shows that machine learning could

be a powerful tool for solving the complicated dynamic systems in macroeconomics.
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1 Introduction

Government tax policy reacts to the change of inequality and taxes have impacts on the

inequality. There are complicated intereactions between taxes and inequality in a dynamic

model. To investigate optimal nonlinear taxes in an economy with aggregate shocks, we first

use a variational approach to characterize the optimal nonlinear tax schedule in the stationary

equilibrium and find the role of the endogeneous distribution in the optimal long-run tax

policy. We then introduce the aggregate shock to the model and investigate the dynamic

Mirrlessian taxation in the heterogeneous agent economy. We solve for a rational expectations

equilibrium in which the agent’s belief about the evolution of aggregate states are consistent

with the dynamics that emerge in the economy.

For a heterogeneous agent model without aggregate shocks, we concentrate on the sta-

tionary equilibrium and investigate the nonlinear taxes that maximize social welfare in the

steady state. We first use the Kolmogorov forward equation to characterize the stationary

wealth distribution. Then we use the calculus of variations to find the formula for the optimal

tax schedule.

For a heterogeneous agent model with aggregate shocks, we carefully characterize the state

space, which permits us to write down the government’s problem recursively. The nonlinear

tax schedule changes with respect to the dynamic state variables of the economy. The state

space consists of a joint distribution of individual wealth, promises, and the aggregate shock.

Our main idea to tackle the heterogeneous-agent Ramsey problem is to characterize the

evolution of the joint distribution of wealth and promise. The problem is then isomorphic to

an optimal transport problem (Kantorovich).

We employ stochastic optimal control in infinite dimensions to solve the optimal nonlin-

ear tax schedule in a Krusell-Smith economy. The government’s social wealth maximization

problem is characterized by a dynamic programming problem with a stochastic partial differ-

ential equation (SPDE) as the constraint. The SPDE characterizes the evolution of the joint

distribution, which describes the whole system.

The novel things of the paper are: first, we describe the government’s optimal nonlinear

tax problem as a recursive dynamic game of the heterogeneous agent model. We use the

Kolmogorov forward equation to characterize the evolution of the economy, and the SPDE
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becomes the constraint of the government’s social welfare maximization problem. Second,

we use stochastic optimal control in infinite dimensions to solve the government’s problem.

Third, we try to use machine learning to implement the numerical exercise.

One major difficulty with working on these models is that the agent distribution becomes

a state variable and so the state space becomes infinite dimensional. In this paper, we demon-

strate how deep learning techniques can relax the “curse of dimensionality” for continuous

time heterogeneous agent models and allow global numerical solutions to be computed. The

paper also shows that machine learning could be a powerful tool for solving the complicated

dynamic systems in macroeconomics. Specifically, we resort to reinforcement learning (RL)

to solve the agent-environment interaction problem in infinite dimensions.

1.1 Literature review

Saez (2001) uses the variational approach to derive the formula of the nolinear tax in

the Mirrleesian model. Sachs et al. (2020) extends the formula to a model with general

equilibrium. Golosov et al. (2014) provides a good summary of the variational approach in

the study of nonlinear taxes.

Chang and Park (2021) use the variational approach to investigate the optimal nonlinear

tax in the Aiyagari model without aggregate shocks. The tax schedule in their paper does not

change over time, even though it takes into account the transition path of the heterogeneous

agent model. We permit the optimal nonlinear tax schedule to change along time. Chang

and Park (2021) use simulations to calculate the Gateaux derivatives involved in variations.1

Different from theire paper, we use numerical methods to solve the Kolmogorov forward equa-

tion directly and obtain the stationary wealth distribution. Then we calculate the Gateaux

derivatives by using the difference method.

Marcet and Marimon (2019) investigate the recursive contract that can be applied to

optimal policy design in dynamic macroeconomics. We extend the recursive method to the

heterogeneous agent model by tracking the cross-section distribution of the state variables.

Jiang et al. (2022) use a recursive method in a continuous-time model, and their model is a

representative-agent model.

Golosov et al. (2016) and Farhi and Werning (2013) investigate the dynamic Mirrleesian

1Using seqential Monte Carlo methods to calculate the gradient is popular in reinforcement learning.
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model and study the optimal nonlinear taxes. However, they do not have general equilibrium

and thus omit the pecuniary externality of the taxes. We investigate the optimal nonlinear

taxes in the heterogeneous agent model with incomplete financial markets.

Bhandari et al. (2021) solve the Ramsey problem in a heterogeneous agent model with

aggregate shocks. They concentrate on the local dynamics around the steady state. And

the steady state corresponds to a heterogeneous agent model without aggregate shocks.2 We

solve the full dynamics of the economy with aggregate shocks and we investigate the optimal

nonlinear taxe.

Dyrda and Pedroni (2022) and Acikgoz et al. (2022) investigate the Ramsey problem

in heterogeneous agent models. They concentrate on the transition of the economy without

aggregate shocks. We investigate the optimal nonlinear taxe and we solve the full dynamics

of the economy with aggregate shocks.

The paper is related to the heterogeneous agent continuous-time (HACT) model. Ahn et

al. (2017) investigate the general equilibrium in a HACT model with aggregate shocks. Nuno

and Moll (2018) investigate the contained efficiency problem in a HACT model.

Renner and Scheidegger (2018) solve large-scale infinite-horizon dynamic incentive prob-

lems with persistent hidden types, but they still haven’t solved the general equilibrium en-

dogenous price vector, so they don’t need to track the endogenous distribution function. Nuno

and Thomas (2022) and Dávila and Schaab (2022) investigate the dynamic game in HACT

models. They concentrate on the open-loop solution. However, they do not find the recursive

solution.

Schaab (2020) argues that the main challenge in numerically solving my model is the

entire cross-sectional distribution of agents, an infinite-dimensional object, becomes part of

the aggregate state space. Gu et al. (2023) use deep learning methods to solve the equilibrium

of the Kresull-Smith model. They incoporate the wealth distribution into the aggregate state

variables and use the Kolmogorov forward equation to describe the evolution of the wealth

distributioh. However, they do not investigate the optimal policy.

Maliar et al. (2021) use machine learning to solve the general equilibrium of the Kresull-

Smith model. Han et al. (2022) use reinforcement learning to study the constrained efficiency

problem in a Krusell-Smith model. However, Maliar et al. (2021) and Han et al. (2022) do

2Reiter (2009) develops the algorithm to solve the local dynamics around the steady state of an Aiyagri
model.
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not investigate the implementation and the dynamic game of the heterogeneous agent model.

2 Model

Time is continuous and is indexed by t ∈ [0,∞). There is a continuum of infinitely-lived

households with a fixed mass indexed by j ∈ [0, 1]. Each household consists of a worker and

an entrepreneur. The worker provides his labor to the labor market, while the entrepreneur

runs a private firm by hiring labor from the labor market.

Financial markets are incomplete. Households face the borrowing constraint kt ≥ 0 and

they have accumulating capital within their own family businesses. The evolution of capital

is given by households’ budget constraint,

dkt = dπt + [wtxtlt − ct − δkt − Tt(yt)] dt, (1)

where dπt is the profit earned from the family business, and wt is the wage rate. The govern-

ment tax schedule Tt(yt) is a twice-continuously differentiable function of income yt and time

t, where

yt = rtkt + wtxtlt. (2)

Thus, the tax base includes both labor earnings and captial income.

Following Achdou et al.(2022), we assume that individual labor efficiency xt follows a two-

state Poisson process, xt ∈ {x1, x2} with x2 > x1. The process jumps from state 1 to state 2

with intensity λ1 and vice versa with λ2. In particular, the two states can be interpreted as

high productivity and low productivity.

Following Angeletos (2007) and Angeletos and Panousi (2009), we assume that each

household has a private business. The private firms have a Cobb-Douglas production function,

F (kt, nt) = eztAkαt n
1−α
t ,

where α ∈ (0, 1). zt represents the aggregate productivity shock, and A is the average pro-

ductivity level. kt is capital, and nt is labor hired by the family business. The profit of each
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private firm is

dπt =
(
eztAkαt n

1−α
t − wtnt

)
dt+ σ1ktdBt,

where Bt denotes a standard Brownian Motion on individual level. σ1 measures the amount

of undiversified idiosyncratic investment risk. Private firms hire labor in a competitive labor

market. Wage rate wt is determined by the labor-market equilibrium. dBt represents the

idiosyncratic investment return shock, which is a crucial mechanism generating the fat tail of

the wealth distribution in the model.

We assume that zt follows the Ornstein-Uhlenbeck process with z̄ = 0,

dzt = −ηztdt+ σ2dWt, (3)

where dWt is the innovation to a standard Brownian motion, η is the rate of mean reversion,

and σ2 captures the size of innovations. Before section 4, we ignore the process of zt and let

it be a constant. In section 4, we take zt into consideration.

The firm chooses nt to achieve

max
nt

eztAkαt n
1−α
t − wtnt.

The optimal labor hiring is

nt =

[
(1− α)eztA

wt

] 1
α

kt.

Therefore, we have

dπt = rtktdt+ σ1ktdBt, (4)

where

rt = α (eztA)
1
α

(
1− α
wt

) 1
α
−1

.

The labor supply in the economy, however, is endogenous. The labor market equilibrium

is an important channel through which the wealth distribution and the aggregate economy

interact. The higher the aggregate capital is, the higher the equilibrium wage rate is. The

high wage rate causes the low average rate of capital return. This mechanism decreases the

dispersion of the wealth distribution, which influences the aggregate wealth since the saving

function is nonlinear and thus the distribution matters.
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We assume that each household has a GHH utility function, u(c̃t), where

c̃t = ct −m(lt), (5)

and a household has preferences over paths for consumption,

E0

[∫ ∞
0

e−ρtu (c̃t) dt

]
(6)

where E0 is the expectation operator conditional on the information set at t = 0, and u(c̃t) is

the instantaneous utility function with u′ > 0 and u′′ < 0. For simplicity, we assume that

u(c̃t) =
c̃t

1−γ

1− γ
, (7)

where γ > 1. And

m(lt) = χ
l
1+ 1

e
t

1 + 1
e

, (8)

where e is the Frisch elasticity of labor supply.

From (1), (2) and (4), we can redefine the household’s budget constraint,

dkt = [yt − c̃t − δkt − Tt(yt)−m(lt)]dt+ σ1ktdBt. (9)

The household suffers from idiosyncratic labor income risk and idiosyncratic investment

risk, and both of them cause the precautionary savings motive. The idiosyncratic labor income

risks are represented by a two-state Poisson process. When the household wealth k is close

to 0, the saving of a household in state x1 is 0, while the counterpart in state x2 is strictly

larger than 0. The large savings of poor individuals in high-earning states are due to the

precautionary savings motive. Further, the positive savings of the high income state cause the

lower bound of the wealth space k = 0 to act as a reflecting barrier of the wealth accumulation

process {kt}∞t=0. Thus, process {kt}∞t=0 would not be stuck at zero and has a non-degenerating

stationary distribution.

The government returns all revenues back to households as lump-sum redistribution and
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has a balanced budget in each period,

∫
Tt(yt)gt(k)dk = Rt, (10)

where gt(k) is the the capital distributions in period t, and Rt is the government revenue. In-

corporating government debts into the model requires complicated techniques. For simplicity,

we omit debts in this study. Debt management and tax smoothing in the heterogeneous-agents

model are interesting topics, which we leave to future research.

3 The steady-state economy

The household chooses consumption at time t in order to maximize his welfare. The value

function of the household at time t can be expressed as

v(k) = max
{c̃(s)}∞s=t

Et
[∫ ∞

t

e−ρ(s−t)u (c̃s) ds

]
. (11)

subject to the law of motion of individual capital (9) and borrowing limit kt ≥ 0. We use the

shorthand notation vi(k) for the value function when household income is low (i = 1) or high

(i = 2). The Hamilton-Jacobi-Bellman (HJB) equation corresponding to the problem above

is

ρvi(k) = max
c̃i,li

u(c̃i) + v′i(k)si(k)− λi (vi(k)− vj(k)) +
1

2
v′′i (k)σ2

1k
2, (12)

for i, j = 1, 2, and j 6= i, where

si(k) = yi − c̃i −m(li)− T (yi)− δk. (13)

The first-order condition for consumption is

v′i(k) = u′(c̃i). (14)

Therefore, household consumption falls with the slope of the value function. Intuitively,

a steeper value function makes it more attractive to consume less and save more.
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The first-order condition for labor supply is

(1− T ′(yi))wxi = m′(li). (15)

The household problem is characterized by the HJB equation. We can compute c̃i =

(v′i(k))−
1
γ and li =

[
(1−T ′(yi))wxi

χ

]e
from the above functions, and we can obtain consumption

function ci(k) and saving function si(k). Detailed derivations of the HJB equation are in

Appendix.

The cross-section capital distributions git(k), i = 1, 2, are governed by the Kolmogorov

Forward (KF) equation

∂git(k)

∂t
=

1

2

∂2

∂k2

[
σ2k2git(k)

]
− ∂

∂k
[sit(k)git(k)]− λigit(k) + λjgjt(k), (16)

for j = 1, 2 and j 6= i. Here we have
∑2

i=1

∫∞
0
git(k)dk = 1.

The stationary distribution gi(k) satisfies

0 =
1

2

∂2

∂k2

[
σ2

1k
2gi(k)

]
− ∂

∂k
[si(k)gi(k)]− λigi(k) + λjgj(k), (17)

for i, j = 1, 2 and j 6= i.

3.1 Competitive equilibrium

The competitive equilibrium of the economy is standard.

Definition 1 Given k0, a competitive equilibrium is defined as sequences of prices {wt, rt}∞t=0,

aggregate allocations {Ct, Nt, Kt, Yt}, government tax policy {Tt}∞t=0 and individual plans {ct, lt}∞t=0,

such that the following conditions hold:

1. given {wt, rt}∞t=0 and {Tt}∞t=0, the plans {ct, lt}∞t=0 are optimal for each household;

2. the labor market clears:
∫
njtdj = Nt =

∑2
i=1

∫∞
0 λilitxigit(k)dk

λ1+λ2
;

3. the government budget is balanced;

4. the aggregate variables are consistent with individual behaviors, Ct =
∫
cjtdj,Kt =

∫ 1

0
kjtdj,

and Yt =
∫
ezt(kjt )

α(njt)
1−αdj, for all t ≥ 0.
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Besides, we find the relationship between wt, rt and Kt, Nt in the competitive equilibrium

wt = (1− α)ezt
(
Kt

Nt

)α
, (18)

rt = αezt
(
Kt

Nt

)α−1

. (19)

3.2 Tax Incidence

We study different incicdences of the income taxation. Since the tax system T is a

functional, we rely on the Gateaux difference.

Definition 2 Let J(a) be a functional and let h be arbitrary in L2(Φ). If the limit

dJ(a;h) = lim
α→0

J(a+ αh)− J(a)

α
, (20)

exists, it is called the Gateaux derivative of J at a in the direction h. If the limit exists for

each h ∈ L2(Φ), the functional J is said to be Gateaux differentiable at a.

Consider an income tax reform represented by a continuous differentiable function h(·)

on R+. Then, a perturbation on tax reform is T (·) + αh(·), where α ∈ R parameterizes the

size of the tax reform. As in Sachs, Tsyvinski, and Wenquin (2020), the first-order effects of

this perturbation can be formally represented by the Gateaux derivative in the direction h.

For example, the incidence of the labor supply is

dl(T ;h) = lim
α→0

l(T + αh)− l(T )

α
. (21)

Similarly, we can define incidences for other variables such as wage rate w, interest rate

r, and social welfare W . In this section, we focus on the elementary tax reforms,

h(y) =
1

1− F (y∗)
1{y≥y∗}, (22)

for a given level of income y∗. Under this tax reform, the tax payment of an individual

with income above y∗ increases by a constant amount 1
1−F (y∗)

, which can be obtained by

the marginal perturbation h′(y) = 1
1−F (y∗)

δy∗(y) where δy∗ is the Direc delta function at y∗.
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With this tax reform, the increased government revenue due to a mechanical increase in tax

payments is equal to 1$.

We start with the study of labor supply. Consider the Gateaux difference on drift term

dsi(T ;h) = kdr(T ;h) + xilidw(T ;h)− dc̃i(T ;h) + T ′(yi)wxidli(T ;h)− h. (23)

In (23), dli(T ;h) denotes the Gateaux derivative of the labor supply in response to tax

reform. Recall the first-order conditions of li,

(1− T ′(yi))wxi = m′ (li) . (24)

We can derive dli(T ;h) from the perturbation of (24),

dli(T ;h) = εliw
li
w
dw + εlir

li
r
dr − εli1−T ′

h′(yi)

1− T ′(yi)
, (25)

and the elasticity of l (εliw, εlir , εli1−T ′) can be seen in Appendix. Elasticities with respect to r,

w, and 1− T ′ are related to individual productivity i.

Given the incidence dw and dr, the incidence on the government revenue dR is

dR(T ;h) =
2∑
i=1

∫ ∞
k∗

gi(k)

1− F (y∗)
dk + dr

2∑
i=1

∫ ∞
0

[
1 +

ξi(y)

1− ξi(y)
εlir

]
kT ′(yi)gi(k)dk

+ dw
2∑
i=1

∫ ∞
0

(1 + εliw)xiliT
′(yi)gi(k)dk − T ′(y∗)

1− T ′(y∗)
y∗f(y∗)

1− F (y∗)

2∑
i=1

gi(
y∗−wxili

r
)

f(y∗)
ξi(y

∗)εli1−T ′(y
∗)

(26)

where

ξi(y) =
wxili
yi

=
wxili

rk + wxili
. (27)

When computing dR, we dispose grids on income y. We let F (y) denote the CDF of y

and f(y) the PDF. Then, we can introduce it into the incidence of tax reform on c̃

dc̃i(T ;h) = (1− T ′)(kdr + xilidw)− dsi − h+ dR. (28)
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3.3 Tax reform analysis and optimal tax formula

In this section, we investigate the normative aspect of the model. Specifically, we study

the different channels through which income taxation has impacts on social welfare and the

relative importance of each channel. We then find the formula for optimal nonlinear income

taxation.

The social welfare function in the steay state is

W =
2∑
i=1

∫ ∞
0

∫ ∞
0

e−ρtu(c̃it(k))git(k)dkdt.

Based on the type of households, we can do the social welfare decomposition. Owing to

W =
2∑
i=1

∫ ∞
0

e−ρt
∫ ∞

0

u(c̃it(k))git(k)dkdt

=
1

ρ

2∑
i=1

∫ ∞
0

u(c̃i(k))gi(k)dk.

(29)

We obtain

dW (T ;h) =
1

ρ

2∑
i=1

∫ ∞
0

[u′(c̃i)dc̃i(T ;h)gi(k) + u(c̃i)dgi(T ;h)] dk

=
1

ρ

2∑
i=1

∫ ∞
0

u′(c̃i)[(1− T ′(yi))(kdr + xilidw) + dR]gi(k)dk

− 1

ρ

2∑
i=1

∫ ∞
0

u′(c̃i)[dsi(T ;h) + h]gi(k)dk

+
1

ρ

2∑
i=1

∫ ∞
0

u(c̃i)dgi(T ;h)dk.

(30)

12



By imposing dW = 0, we obtain the optimal marginal tax rate at income level y∗.

T ′ (y∗)

1− T ′ (y∗)
=

1− F (y∗)

y∗f(y∗)
× Γ(y∗)× [A (y∗) + B (y∗) + C (y∗) +D (y∗) + E (y∗) + F (y∗)]

where Γ(y∗) =
1∑2

i=1

gi(
y∗−wxili

r
)

f(y∗)
ξi(y∗)ε

li
1−T ′(y

∗)

A (y∗) =
2∑
i=1

∫ ∞
k∗

[
1− u′(c̃i)

ϕ

]
gi(k)

1− F (y∗)
dk

B (y∗) =
1

ϕ

2∑
i=1

∫ ∞
0

u′(c̃i)(1− T ′(yi))(kdr + xilidw)gidk

C (y∗) = dw
2∑
i=1

∫ ∞
0

(1 + εliw)xiliT
′(yi)gi(k)dk

D (y∗) = dr
2∑
i=1

∫ ∞
0

[
1 +

ξi(y)

1− ξi(y)
εlir

]
kT ′(yi)gi(k)dk

E (y∗) = − 1

ϕ

2∑
i=1

∫ ∞
0

u′(c̃i)dsi(T ;h)gidk

F (y∗) =
2∑
i=1

∫ ∞
0

u(c̃i)dgi(T ;h)dk

(31)

here ϕ =
∑2

i=1

∫∞
0
u′(c̃i)gi(k)dk.

With this method, we implement the iteration procedure to find the marginal tax rate

through a numerical exercise. Our results roughly match those in Chang and Park (2021),

and Figure 1 shows it. Chang and Park (2021) take into account the transition path of the

economy, while we only consider the steady state in this section.

3.4 Numerical results

We choose proper parameters to calculate the quantiles of the distributions of income and

wealth in the model and compare them with U.S. data. In the real world, the data in Table

1 and Table 2 refer to Dı́az-Giménez, Glover, and Ŕıos-Rull (2011), who calculated the data

from the Survey of Consumer Finances (SCF). From the data, we find that the Gini of capital

in the U.S. is 0.816 and the Gini of income is 0.575.

To approximate the optimal tax schedule numerically, we use the optimal tax formula as

an updating rule to find a fixed point in the marginal tax schedule. We set grid points on
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income y and assume that the tax schedule T (y) is piecewise linear on the grid points.

Figure 1: The optimal marginal tax rate T ′

Step1 : Assume an initial tax schedule T 0.

Step2 : Given Tm, solve a steady-state equilibrium, in which agents choose optimal consump-

tion and market clears.

Step3 : Use the optimal tax formula to compute an alternative marginal tax schedule, then

we have Tm+1.

Step4 : Repeat Step2 and Step3, until |Tm+1 − Tm| < ε.

The above is the basis algorithm of a numerical approximation of the optimal tax schedule,

and it contains inner and outer parts. The inner part solves steady-state equilibrium, in

which we deploy the finite difference scheme derived from Achdou et al. (2017). The outer

part iterates T ′(y) to find a fixed-point of T (y), and we use a loop algorithm similar to Chang

and Park(2021). Following Sachs et al. (2020), we deploy a tax schedule with a constant rate

of progressivity (CRP) as the initial guess of the iterative procedure.

The data derived from our model fit the capital in the U.S. well, with a Gini index of

0.809. Besides, the Top 1% groups share in the wealth distribution fits well. However, the

counterpart of income is not fit enough, as the Gini index is 0.648.
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Figure 2: Lorenz curve of capital

Table 1: Wealth Distribution
Wealth Partition

Percentile 0− 20 20− 40 40− 60 60− 80 80− 90 90− 95 95− 99 99− 100
Wealth share (data) −0.002 0.011 0.045 0.112 0.120 0.111 0.267 0.336

Wealth share (model) 0 0 0.049 0.109 0.170 0.154 0.298 0.217

Table 2: Income Distribution
Income Partition

Percentile 0− 20 20− 40 40− 60 60− 80 80− 90 90− 95 95− 99 99− 100
Income share (data) 0.028 0.067 0.113 0.183 0.138 0.102 0.159 0.210

Income share (model) 0.044 0 0.022 0.086 0.302 0.183 0.228 0.135

15



4 Introduce Aggregate Shocks into the Economy

A major innovation of our study is that we consider the aggregate shocks in an incomplete

market. The expansion of the state space helps us deal with problems that have not been

addressed in previous studies.

It should be noticed that, compared to its counterpart in Section 2, here the stationary

state is expanded to take in the aggregate shock zt. Besides, it is not a steady state but

stationary instead, since zt is not deterministic.

Our main idea to tackle the heterogeneous-agent Ramsey problem is to characterize the

evolution of the joint distribution of wealth and promise. The problem is then isomorphic to

an optimal transport problem (Kantorovich).

Now we turn to government problems. In an economic society, the government behaves as

a social planner in order to guide and regulate economic operations. The government chooses

an optimal taxation schedule T (·) to maximize the social welfare function. Notice that the

government also ”controls” the individual value function v(·). In fact, this is because the

government needs to give ”promise” to individuals for the sake of incentive compatibility. In

mathematics terminology, we are solving mean field games with common noise.

4.1 Joint probability density distribution

Starting from the individual value function vi(kt, rt), it satisfies

vi(kt, rt) = maxEt
[∫ ∞

t

eρ(s−t)u(c̃is)ds

]

with

dkt = si(kt)dt+ σ1ktdBt, (32)

and we derive

vi(kt, rt) = maxEt
[∫ t+∆t

t

eρ(s−t)u(c̃is)ds+

∫ ∞
t+∆t

eρ(s−t)u(c̃is)ds

]
= max {u(c̃it)∆t+ (1− ρ∆t)Et [λi∆tv−i(kt+∆t, rt+∆t) + (1− λi∆t)vi(kt+∆t, rt+∆t)]}

= max [u(c̃it)∆t+ Et [λi∆tv−i(kt+∆t, rt+∆t) + (1− λi∆t)vi(kt+∆t, rt+∆t)]} ,
(33)
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for i = 1, 2. We adopt the convention that −i = 2 when i = 1, and −i = 1 when i = 2.

Now consider Et[vi(kt+∆t, rt+∆t)]. Different from the Section 2, the extra rt here represents

the environmental factor after the introduction of aggregate shock. With a increment of ∆t,

many variables in economy system has changed, of which the most anonyous are aggregate

variables, such as price rt and wt. To calculate Et[vi(kt+∆t, rt+∆t)], we take into account the

evolution of rt. Then (33) turns to

vi(kt, rt) =u(c̃it)∆t+

∫∫
λi∆tv−i(kt+∆t, rt+∆t)ψi(kt+∆t, rt+∆t|kt, Xt)dkt+∆tdrt+∆t

+

∫∫
(1− λi∆t)vi(kt+∆t, rt+∆t)ψi(kt+∆t, rt+∆t|kt, rt)dkt+∆tdrt+∆t,

(34)

where ψi(kt+∆t, rt+∆t|kt, rt) is the joint probability density function containing idiosyncratic

labor shock i, idiosyncratic capital shock k, and aggregate shock X. And we have

ψi(kt+∆t, rt+∆t|kt, rt) = Pri(kt+∆t|kt)Pr(rt+∆t|rt), (35)

for i = 1, 2. It can be derived in Appendix D.

Our approach here is to take the continuous-time limit. From (32) we have

dkt
kt

= s̃i(kt)dt+ σ1dBt, (36)

where s̃i(kt) = si(kt)
kt

. By Itô’s Lemma, we have

d log kt =

[
s̃i(kt)−

1

2
σ2

1

]
dt+ σ1dBt. (37)

For Pri(kt+∆t|kt), we have

Pri(kt+∆t|kt) =
1

kt+∆tσ̂1

√
2π
e
−

[
log

(
kt+∆t
kt

)
−ŝi(kt)

]2
2σ̂2

1 , (38)

where ŝi(kt) =
[
s̃i(kt)− 1

2
σ2

1

]
∆t, and σ̂1 = σ1

√
∆t, for i = 1, 2. Since kt+∆t is log normally

distributed, we have log kt+∆t ∼ N (log kt + ŝi(kt), σ̂
2
1).
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4.2 Envelope condition

Now we derive a necessary condition for incentive compatibility. First, we take derivative

on (34) with respect to c̃it

0 =u′(c̃it)∆t+

∫∫
λi∆tv−i(kt+∆t, Xt+∆t)

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂c̃it
dkt+∆tdXt+∆t

+

∫∫
(1− λi∆t)vi(kt+∆t, Xt+∆t)

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂c̃it
dkt+∆tdXt+∆t

=u′(c̃it)∆t+

∫∫
λi∆tv−i(kt+∆t, Xt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Φi(kt)dkt+∆tdXt+∆t

+

∫∫
(1− λi∆t)vi(kt+∆t, Xt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Φi(kt)dkt+∆tdXt+∆t,

(39)

where

Ωi(kt) =
log
(
kt+∆t

kt

)
− ŝi(kt)

ktσ̂2
1

,

and

Φi(k) = kt
∂ŝit
∂c̃it

= −∆t,

for i = 1, 2.

Similarly, for lit we have

0 =

∫∫
λi∆tv−i(kt+∆t, rt+∆t)

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂lit
dkt+∆tdXt+∆t

+

∫∫
(1− λi∆t)vi(kt+∆t, rt+∆t)

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂lit
dkt+∆tdXt+∆t

=

∫∫
λi∆tv−i(kt+∆t, rt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Πi(kt)dkt+∆tdXt+∆t

+

∫∫
(1− λi∆t)vi(kt+∆t, rt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Πi(kt)dkt+∆tdXt+∆t,

(40)

where

Πi(kt) =
[
wxi (1− T ′(yit))− χl

1
e
it

]
∆t,

for i = 1, 2. (39) and (40) are the first-order conditions for the household’s problem, and we

can obtain optimal c∗ and l∗ from solving them.
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Then, we take derivative on (34) with respect to kt,

∂vi(kt, Xt)

∂kt

=u′(c̃it)
∂c̃it
∂kt

∆t+

∫∫
λi∆tv−i(kt+∆t, Xt+∆t)

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂kt
dkt+∆tdXt+∆t

+

∫∫
(1− λi∆t)vi(kt+∆t, Xt+∆t)

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂kt
dkt+∆tdXt+∆t

=

∫∫
λi∆tv−i(kt+∆t, Xt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Θi(kt)dkt+∆tdXt+∆t

+

∫∫
(1− λi∆t)vi(kt+∆t, Xt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Θi(kt)dkt+∆tdXt+∆t

+

{
u(c̃it)

∂c̃it
∆t+

∫∫
λi∆tv−i(kt+∆t, Xt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Φi(kt)dkt+∆tdXt+∆t

+

∫∫
(1− λi∆t)vi(kt+∆t, Xt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Φi(kt)dkt+∆tdXt+∆t

}
∂c̃it
∂kt

+

{∫∫
λi∆tv−i(kt+∆t, Xt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Πi(kt)dkt+∆tdXt+∆t

+

∫∫
(1− λi∆t)vi(kt+∆t, Xt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Πi(kt)dkt+∆tdXt+∆t

}
∂lit
∂kt

,

(41)

where

Θi(kt) = 1 + rt (1− T ′(yit))− δ − s̃i(kt). (42)

With (39) and (40), an envelope condition suggests that

∂vi(kt, Xt)

∂kt

=

∫∫
λi∆tv−i(kt+∆t, rt+∆t)ψi(kt+∆t, rt+∆t|kt, rt)Ωi(kt)Θi(kt)dkt+∆tdrt+∆t

+

∫∫
(1− λi∆t)vi(kt+∆t, rt+∆t)ψi(kt+∆t, rt+∆t|kt, rt)Ωi(kt)Θi(kt)dkt+∆tdrt+∆t.

4.3 Promise factor

We aim to solve the dynamic games between government and households. Since there

are forward-looking constraints, the solution procedure for such games cannot be recursive.

It is not measurable for the current physical measure; in fact, it corresponds to anticipating

stochastic calculus in stochastic analysis. The solution is orbital dependent, and showing as

history dependent. This is quite common in the inverse equations of finance. Therefore, we
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need to introduce a promise and expand the state space, in order to make solutions recursive.

We can regard Γit as components of the partial derivative of vi(kt, rt) with regard to kt,

Γit =

∫∫
λi∆tv−i(kt+∆t, Xt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Θi(kt)dkt+∆tdXt+∆t

+

∫∫
(1− λi∆t)vi(kt+∆t, Xt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Θi(kt)dkt+∆tdXt+∆t

=
Θi(kt)

Ψi(kt)

∫∫
λi∆tv−i(kt+∆t, Xt+∆t)

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂kt
dkt+∆tdXt+∆t

+
Θi(kt)

Ψi(kt)

∫∫
(1− λi∆t)vi(kt+∆t, Xt+∆t)

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂kt
dkt+∆tdXt+∆t,

where

Ψi(kt) = 1 + kt
∂ŝi
∂kt

,

for i = 1, 2.

Now we look back to cross-sectional distribution,

ψi(kt+∆t, rt+∆t|kt, rt) = Pr(rt+∆t|rt)
1

kt+∆tσ̂1

√
2π
e
−

[
log

(
kt+∆t
kt

)
−ŝi(kt)

]2
2σ̂2

1 ,

for i = 1, 2.

Compute the derivative of ψi(kt+∆t, Xt+∆t|kt, Xt) with respect to kt and kt+∆t, we find

that

kt
∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂kt
= −Ψi(kt)

[
kt+∆t

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂kt+∆t

+ ψi(kt+∆t, Xt+∆t|kt, Xt)

]
,

(43)

for i = 1, 2.

Then we can construct

ktΓit =
Θi(kt)

Ψi(kt)

∫∫
λi∆tv−i(kt+∆t, Xt+∆t)kt

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂kt
dkt+∆tdXt+∆t

+
Θi(kt)

Ψi(kt)

∫∫
(1− λi∆t)vi(kt+∆t, Xt+∆t)kt

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂kt
dkt+∆tdXt+∆t

=Θi(kt)

∫∫
kt+∆tΓi,t+∆tψi(kt+∆t, Xt+∆t|kt, Xt)dkt+∆tdXt+∆t,

for i = 1, 2. Here we use (43) to make it, and we consider the transition probability since
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there are idiosyncratic shocks. With Martingale Representation Theorem, we obtian

Θi(kt)kt+∆tΓi,t+∆t − ktΓit − σWσ2dWt = σBσ1ktdBt,

which implies that, in the continuous-time limit, we can write

d(ktΓit) = [(1−Θi(kt))(ktΓit)]dt+ σBσ1ktdBt + σWσ2dWt.

Applying Itô’s Lemma, we infer that Γ solves the following stochastic differential equation

dΓit =
{

[δ − rt (1− T ′(yit))] Γit − σ2
1σ̂B

}
dt+ σ1σ̂BdBt + σ2σ̂WdWt,

where σ̂B and σ̂W are functions of the state variables {i, kt,Γit}.

4.4 Incentive compatible by promise factor

Since we already have the definition and evoluntion of “promise factor” Γit, now we back

to the first-order condition. For (39) we have

0 = u′(c̃it)∆t+
Φi(k)

Θi(kt)
Γit = u′(c̃it)∆t−

Γit
Θi(kt)

∆t,

with ∆t→ 0, we obtain

u′(c̃it) =
Γit

Θi(kt)
. (44)

Actually, it is homeomorphous with that in the household problem.

As for lit, we introduce the definition of Γit into (40)

0 =
Π(lit)

Θi(kt)
Γit, (45)

for any ∆t→ 0 the equation holds, it requires

wxi (1− T ′(yit))− χl
1
e
it = 0. (46)

It is also compatible with that in the household problem.
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4.5 Derivations of SPDE

Given the first-order condition, we can regard Γit as ”promise factor” by solving optimal

choices ct and lt from the first-order condition. The optimal taxation schedule, {Tit}, depends

on an entire story of both idiosyncratic and aggregate shocks {Bt,Wt; t ≥ 0}. Using the

Martingale Representation Theorem, without loss of generality, we can represent the dynamics

of the “promise factor” {Γit; t ≥ 0} in individual problems as

dΓit = µitdt+ σΓ,BdBt + σΓ,WdWt, (47)

where µit = [δ − rt(1− T ′(yit)] Γit − σ1σΓ,B.

For simplicity, we let

St =

 kt

Γit

 , bt =

 si(kt)

µit

 , (48)

and

Σ1,t =

 σ1kt

σΓ,B

 , Σ2,t =

 0

σΓ,W

 . (49)

The evolution of St is

dSt = btdt+ Σ1,tdBt + Σ2,tdWt. (50)

Here, Bt is the representation of idiosyncratic shock, and Wt is said to be the common

source of noise. The evolution of Γit in (47) suggests that the ”economic promises” are con-

strained by idiosyncratic and aggregate shocks. When managing its taxation dynamics, the

government also actively engages in idiosyncaratic and aggregate risk management by choos-

ing hedging demands σΓ,B and σΓ,W . The government chooses taxation Tit, idiosyncratic-risk

hedging demand σΓ,B, and aggregate-risk hedging demand σΓ,W to maximize the value func-

tion.

We apply Itô’s formula and derive the evolution form of Gt(i, k,Γ), which is the joint

distribution of state variables {i, k,Γ}

dGt(i, k,Γ) =M(Gt(i, k,Γ))dt+N (Gt(i, k,Γ))dWt, (51)
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where

M(Gt) =
1

2

∂2

∂k2

[
σ2

1k
2
tGt(i, k,Γ)

]
+

1

2

∂2

∂Γ2

[
(σ2

Γ,B + σ2
Γ,W )Gt(i, k,Γ)

]
− ∂

∂k
[sitGt(i, k,Γ)]− ∂

∂Γ
[µitGt(i, k,Γ)]− λiGt(i, k,Γ) + λ−iGt(−i, k,Γ)

(52)

and

N (Gt(i, k,Γ)) =
∂[σΓ,WGt(i, k,Γ)]

∂Γ
. (53)

for i = 1, 2. This is a stochastic partial differential equation (SPDE).

Combining G and z and letting X =

 G
z

 , we have

dXt = Pdt+QdWt (54)

where

P =

 M

−ηzt

 , Q =

 N
σ2

 . (55)

4.6 Optimal taxation

For the government, the social welfare function is

W(Gt, zt) = max
T,σΓ,B ,σΓ,W

Et

[∫ ∞
t

e−ρ(s−t)

(
2∑
i=1

∫∫
u(c̃s(i, k,Γ)Gs(i, k,Γ)dkdΓ

)
ds

]
s.t.

dXt =Pdt+QdWt,

u′(c̃it) =
Γit

Θi(kt)
,

χl
1
e
it =wxi (1− T ′(yit))

(56)

This is an optimal control problem in infinite dimension, since the evolution equation of Xt
is stochastic partial differential equation. Notice that u(c̃s(i, k,Γ)) is actually deterministic

part, now the whole control focus on Gs(i, k,Γ).
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Using a recursive argument, we can obtain the HJB equation that W(G, z) satisfies

ρW(G, z)

= max
T,σΓ,B ,σΓ,W

2∑
i=1

∫
u(c̃(i, k,Γ))G(i, k,Γ)dkdΓ +

〈
P , ∂W

∂X

〉
+

1

2
Tr

[
QQT ∂

2W
∂X 2

]

= max
T,σΓ,B ,σΓ,W

2∑
i=1

∫
u(c̃(i, k,Γ))G(i, k,Γ)dkdΓ +

2∑
i=1

∫
BWgdkdΓ− ηzWz

+
1

2

[
2∑
i=1

∫∫
Wgg(x, y)D(x)D(y)dydx+ 2

2∑
i=1

∫
Wgz(x)Dσ2dx+Wzzσ

2
2

]
.

The main challenge is to compute a series of choice functions. Comparing with Ahn et

al. (2017), our methods have some advantages. First, Ahn et al. (2017) exert the first-order

Taylor expansion on steady state, while we deploy the same things on the whole state space

of the dynamic system. Second, the model of Ahn et al. (2017) only has one transition path,

while we enlarge the state space to make the model recursive. Besides, we blaze a new trail

to solve the social planner problem by recursive methods, which is quite different from Nuno

(2018) and Dávila and Schaab (2022).
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5 Numerical exercises

As of now, our problem is gigantic and systematic, mainly because of the introduction

of environment. With the evolution of z in the environment, the equilibrium diverges, and

the state space is infinite-dimensional. Besides, there are interactions between agents and

environments. One major difficulty with working on these models is that the agent distribution

becomes a state variable and so the state space becomes infinite dimensional. Traditional

numerical computation methods are scarcely able to solve such problems, so we have to resort

to reinforcement learning (RL).

The economics literature has traditionally used three main approaches for solving hetero-

geneous agent models with aggregate shocks. One approach is to fit a statistical approximation

to the law of motion for the key aggregate state variables (e.g. Krusell and Smith (1998), Den

Haan (1997), Fernández-Villaverde et al. (2018)). As has been extensively discussed in the

literature, this approach works well when the law of motion for the key state variables can

be well approximated as a function of key moments of the distribution (and so the economy

is very close to permitting “aggregation”). By contrast, our approach can handle economies

without near aggregation results. A second approach is to take a type of linear perturbation

in the aggregate state and then solve the resulting linear problem with matrix algebra (e.g.

Reiter (2002), Reiter (2008), Reiter (2010), Winberry (2018), Ahn et al. (2018), Auclert et al.

(2021), Bilal (2021), Bhandari et al. (2023)). By contrast, we solve the model globally and

so can handle partial differential equations with extensive non-linearity. A final approach is

to take a low dimensional projection of the distribution (e.g. Prohl (2017), Schaab (2020)).

Our approach is complementary to these papers in that it allows for more general, higher

dimensional projections.

5.1 The RL method

Broadly speaking, reinforcement learning is a computational method by which agents

interact with the environment to achieve goals. A round of interaction means that the agent

makes an action decision in a state of the environment, applies this action to the environment,

and the environment changes accordingly and gives the corresponding reward feedback and

the next round of state back to the agent. The interaction is iterative, and the agent’s goal is

25



to maximize the expectation of cumulative rewards earned over the course of multiple rounds

of interaction. Agents in reinforcement learning can not only perceive information about the

environment around them, but also directly change the environment by making decisions,

instead of just giving some predictive signals.

Specifically, in each round of interaction, the agent senses the current state of the envi-

ronment, calculates the action of the epicycle, and then acts on it in the environment. After

the environment receives the action of the agent, the corresponding immediate reward signal

is generated, and the corresponding state transition occurs. The agent perceives the new envi-

ronmental state in the next round of interaction, and so on. In the dynamic environment, every

time the agent interacts with the environment, the environment will generate corresponding

reward signals, which are often represented by real scalar numbers. This reward signal is

usually a timely feedback signal that interprets the current state or action, like the score value

of an action during the course of playing a game. The reward signals obtained in each round

of the interaction process can be added up to form the overall return of the agent, like the

score value at the end of a game. According to the dynamic nature of the environment, we

can know that even if the environment and the agent’s strategy remain unchanged, the initial

state of the agent will also remain unchanged, and the interaction between the agent and the

environment will probably produce different results and corresponding returns. Therefore, in

reinforcement learning, we pay attention to the expectation of return and define it as value,

which is the optimization goal of the agent.

The overall idea of our RL algorithm is an iterative procedure starting from the initial

guess of the government policy T 0, σ0
Γ,B, and σ0

Γ,W . Each iteration (in RL we call it an episode)

includes three steps: (a) gerenate the training dataset with current policy; (b) use the dataset

to train RL framework and refresh neural network parameters; (c) update the policy and start

a new iteration with the refreshed policy. We have two sub-networks. The first approximates

the new policies T , σΓ,B, and σΓ,W with parameter ΘPol, and the second approximates the

welfare function W with parameter ΘW . Both sub-networks take (G, z) in training set as

input.

To solve this infinite-dimensional optimal control problem in continuous time more effi-

ciently, we focus on the PPO (Proximal Policy Optimization) algorithm. PPO is a kind of

actor-critic framework, so it can handle continuous-time issues. Besides, PPO reduces the
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calculation time significantly in the following ways: First, it restricts in the objective function

to ensure that the gap between the new parameter and the old parameter is not too large,

by means of POP-penalty and POP-clip. Second, it reuses the data under the old policy to

refresh the new policy by means of importance sampling.

Now we further explain the details of the three main steps of the T round.

Preparing the training dataset. We simulate the economy for N periods under current

policies T t−1, σt−1
Γ,B, and σt−1

Γ,W . Then we store enough samples of state variables (i, k,Γ;G, z),

which will be used as the initial condition for later updating.

Update the welfare function. Given the policy, updating the welfare function can be

formulated as a supervised learning problem. First, we use the training data to calculate a

truncated real welfare function

Ŵ =

N1∑
t=0

e−ρt

(
2∑
i=1

∫∫
u(c̃t(i, k,Γ)Gt(i, k,Γ)dkdΓ

)
(57)

Then we use WNN(ΘW) to approximate the expected welfare function, and we can con-

struct loss function

LossW =WNN(ΘW)− Ŵ (58)

Until loss function converges, we update the welfare function WNN with parameter ΘW .

Optimize policy function. Now we need to optimize the parameters of the policy

function neural network over simulated paths. Given the updated welfare functionWNN(ΘW),

we update ΘPol in PolNN by solving such a maximum problem

EGt−1

[
M2∑
s=1

βsWNN(ΘPol) + βM2WNN(ΘW)

]
(59)

The ΘPol will be updated by the SGD (Stochastic Gradient Descent) algorithm. When

the new policy Polk are generated, a new epoch starts. After T epochs, we believe the final

policies PolT are acceptable, so we regard them as optimal policies. Unlike conventional

machine learning methods, the convergence of RL is not judged by the loss function but is

instead achieved when the rewards in each epoch turn out to be stable.

Here is the pesudo code of our RL algorithm.

Here are the policy curves under a random seed.
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Algorithm 1: Framework of RL algorithm on Policy Optimization

Input: Iteration epoch T , neural network with parameters ΘW and ΘPol

Output: Optimal policy function Pol = {T , σΓ,B, σΓ,W}
1 for t = 1, 2, ..., T do
2 Given policy function Polt−1, prepare stationary distribution Gt−1;
3 for i = 1, 2, ..., N1 do
4 Simulate M1 samples of state (s,X) from Gt−1;

5 Compute the realized welfare Ŵ through these samples;

6 Compute Loss = |Ŵ −WNN | and generate the gradient ∇ΘW ;
7 Update ΘW with ∇ΘW

8 end
9 for j = 1, 2, ..., N2 do

10 Simulate M2 samples of state (s,X) with new policy;

11 Solve Maximum problem EGt−1

[∑M2

s=1 β
sW(PolNN) + βM2WNN

]
and

generate the gradient ∇ΘPol ;
12 Update ΘPol with ∇ΘPol

13 end
14 Define Polt

15 end

The following is the simulation under a random seed. We randomly generate a 1000-

preriod z−series, under simulate the economy with an established and already trained marginal

rate. Here we capture four index: wealth Gini index, income Gini index, average marginal

rate, and ratio of government transfers to GDP.

With the above results, the ability to describe economic scenarios of our model is illus-

trated. Table 3 shows a comparison of the model data with realistic U.S. data or previous

studies.

Table 3: Index Comparation
Index U.S. data Our model

Wealth Gini 0.816 0.521
Income Gini 0.575 0.454
Average MR 0.255 0.486

Wealth-Income Cor 0.430 0.128
Capital/GDP 2.540 5.58
Transfer/GDP 0.150 0.128

In particular, the U.S. data of the Wealth Gini index and Income Gini index is calculated

by Dı́az-Giménez et.al. (2011) from the Survey of Consumer Finances (SCF). The Average MR

is from Chang, Y. and Y. Park (2021), and the Transfer/GDP ratio is calculated from BEA
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database. Data of Wealth-Income Corr and Capital/GDP are from Bhandari et.al. (2023).

Besides, we also report the aggregate variables.
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A Derivations in Section 2

A.1 HJB equation

Consider the following income fluctuation problem in continuous time, in which periods

are of length ∆t. The value function is

vi(k) = max
c̃,l

Et
∫ ∞
t

e−ρ(s−t)u(c̃i(s))ds (A.1)

for i = 1, 2. We will momentarily take ∆t→ 0, then we have

vi(k) = max
c̃,l

Et
∫ ∞
t

e−ρ(s−t)u(c̃i(s))ds

= max
c̃,l

Et
[∫ t+∆t

t

e−ρ(s−t)u(c̃i(s))ds+

∫ ∞
t+∆t

e−ρ(s−t)u(c̃i(s))ds

]
= max

c̄,l
Et
[∫ t+∆t

t

e−ρ(s−t)u(c̃i(s))ds+ (1− λi∆t) vi(k + ∆k) + λi∆tv−i(k + ∆k)

]
= max

c̃,l
Et [u(c̃i)∆t+ (1− λi∆t) vi(k + ∆k) + (λi∆t)v−i(k + ∆k)]

= max
c̃,l

Et[u(c̃i)∆t+ (1− λi∆t)(vi(k) + vi,t∆t+ vi,k∆k +
1

2
vi,tt(∆t)

2 +
1

2
vi,kk(∆k)2)

+ λi∆t(v−i(k) + v−i,t∆t+ v−i,k∆k +
1

2
v−i,tt(∆t)

2 +
1

2
v−i,kk(∆k)2)]

= max
c̃,l

Et
[
u(c̃i)∆t+ vi(k)− λi∆t (vi(k)− vj(k))− ρvi(k)∆t+ v′i(k)si(k)∆t+

1

2
v′′i (k)σ2

1k
2∆t

]
(A.2)
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⇔ 0 = max
c̃,l

u(c̃i)− ρvi(k) + v′i(k)si(k)− λi (vi(k)− vj(k)) +
1

2
v′′−i(k)σ2

1k
2 (A.3)

We have the HJB function

ρvi(k) = max
c̃,l

u(c̃i) + v′i(k)si(k)− λi (vi(k)− vj(k)) +
1

2
v′′i (k)σ2

1k
2 (A.4)

A.2 The KF equation

We know that

dkt = s(kt)dt+ σ1ktdBt (A.5)

For all functions ϕ(k), we have

E[ϕ(kt+∆t)] =

∫ ∞
k

ϕ(k)[pi∆tgi(kt+∆t) + (1− pi∆t)g−i(kt+∆t)]dk (A.6)

On the other hand, we have

dϕ(kt) =ϕ′(kt)dkt +
1

2
ϕ′′(kt)(dkt)

2

=

[
ϕ′(kt)s(kt) +

1

2
ϕ′′(kt)σ

2
1k

2
t

]
dt+ ϕ′(kt)σ1ktdBt

(A.7)

by Itô’ s lemma.

We have∫∞
k
ϕ(kt) (pi∆tgi(kt+∆t) + (1− pi∆t) g−i(kt+∆t)) dk −

∫∞
k
ϕ(kt)gi(kt)dk

∆t

=
Et[ϕ(kt+∆t)]− Et[ϕ(kt)]

∆t

=Et

[
ϕ′(kt)s(kt) +

1

2
ϕ′′(kt)σ

2
1k

2
t

]
=

∫ ∞
k

[
ϕ′(kt)s(kt) +

1

2
ϕ′′(kt)σ

2
1k

2
t

]
g(kt)dk

(A.8)
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On the other hand, we have∫∞
k
ϕ(kt) [pi∆tgi(kt+∆t) + (1− pi∆t) g−i(kt+∆t)] dk −

∫∞
k
ϕ(kt)gi(kt)dk

∆t

=

∫∞
k
ϕ(kt) [(1− λi∆t) gi(kt+∆t) + λi∆tg−i(yt+∆t)] dk −

∫∞
k
ϕ(kt)gi(kt)dk

∆t

=

∫ ∞
k

ϕ(kt)

[
gi(kt+∆t)− gi(kt)

∆t
− λigi(kt+∆t) + λ−ig−i(kt+∆t)

]
dk

=

∫ ∞
k

ϕ(kt)

[
∂

∂t
gi(kt)− λi (gi(kt)− g−i(kt))

]
dk

(A.9)

Therefore, let ϕ(0) = ϕ(∞) = 0 and we have∫ ∞
k

ϕ(kt)[
∂

∂t
gi(kt)− λj (gi(kt)− g−i(kt))]dk

=

∫ ∞
k

[
ϕ′(kt)si(kt) +

1

2
ϕ′′(kt)σ

2
1k

2
t

]
gi(kt)

=−
∫ ∞
k

ϕ(kt)
∂

∂k
[si(kt)gi(kt)] dk +

1

2

∫ ∞
k

ϕ(kt)
∂2

∂k2

[
σ2

1k
2
t gi(kt)

]
dk

(A.10)

Thus, we have

0 =

∫ ∞
k

ϕ(kt)

[
∂

∂t
gi(kt) +

∂

∂k
[si(kt)gi(kt)]− λi(gi(kt)− g−i(kt))−

1

2

∂2

∂k2
[σ2

1k
2
t gi(kt)]

]
dk

(A.11)

Since ϕ(k) is arbitrary, we have

0 =
∂

∂t
gi(kt) +

∂

∂k
[si(kt)gi(kt)]− λi(gi(kt)− g−i(kt))−

1

2

∂2

∂k2
[σ2

1k
2
t gi(kt)] (A.12)

Thus we have

0 =
1

2

∂2

∂k2

[
σ2k2gi(k)

]
− ∂

∂k
[si(k)gi(k)]− λigi(k) + λ−ig−i(k) (A.13)
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B Derivations in Section 3

B.1 Incidence on Labor Supply

The standard labor supply elasticity with respect to the retention rate, 1−T ′(y), is defined

as

e =
m′(l)

lm′′(l)
(B.14)

which only considers the linear constraint and thus the direct effect on the labor supply of

an exogenous increase in the retention rate. However, there are also indirect effects under a

nonlinear tax system T . An adjustment on the labor supply l leads to an endogenous change

on the marginal tax rate T ′(y), leading to a further adjustment on the labor supply.

Let’s start from first-order condition (15). Consider the perturbed first-order condition.

1. Hold w and r constant and change the retention rate to 1− T ′, then

m′(li + αdli) =wxi{1− T ′[(rk + wxi(li + αdli)] + αd(1− T ′(yi))}

m′(li) +m′′(li) · αdli =wxi[1− T ′(yi)− T ′′(yi) · αwxidli + αd(1− T ′(yi))]

m′′(li)dli =− w2x2
iT
′′(yi)dli + wxid(1− T ′(yi))

[m′′(li) + w2x2
iT
′′(yi)]dli =wxid(1− T ′(yi))

(B.15)

Then

εli1−T ′ =
dli

d(1− T ′(yi))
1− T ′(yi)

li
=

wxi
m′′(li) + w2x2

iT
′′(yi)

1− T ′(yi)
li

=

wxi(1−T ′(yi))
li·m′′(li)

1 +
w2x2

i T
′′(yi)

m′′(li)

=

m′(li)

li·m′′(li)

1 + wxili
yi

m′(li)
lim′′(li)

yiT ′′(yi)
1−T ′(yi)

=
e

1 + epi(y)ξi(y)

(B.16)

where

pi(y) =
yiT

′′(yi)

1− T ′(yi)
(B.17)

and

ξi(y) =
wxili
yi

=
wxili

rk + wxili
(B.18)

It denotes the local rate of progressivity of the tax schedule.
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2. Hold r and rentention rate constant and change the w, then

m′(li + αdli) =(w + αdw)xi{1− T ′[rk + (w + αdw)xi(li + αdli)]}

m′(li) + αm′′(li)dli =(w + αdw)xi[1− T ′(yi + αxilidw + αwxidli + α2dw · xidli)]

m′′(li)dli =− wxiT ′′(yi)(wxidli + xilidw) + [1− T ′(yi)]xidw

[m′′(li) + w2x2
iT
′′(yi)]dli =[(1− T ′(yi))xi − T ′′(yi)wx2

i li]dw

(B.19)

Then

εliw =
dli
dw

w

li
=

[1− T ′(yi)]xi − T ′′(yi)wx2
i li

m′′(li) + w2x2
iT
′′(yi)

w

li

=

wxi(1−T ′(yi))−w2x2
i liT

′′(yi)

li·m′′(li)

1 +
w2x2

i T
′′(yi)

m′′(li)

=

m′(li)
lim′′(li)

(
1− wxili

yi

yiT
′′(yi)

1−T ′(yi)

)
1 + wxili

yi

m′(li)
lim′′(li)

yiT ′′(yi)
1−T ′(yi)

=
e(1− pi(y)ξi(y))

1 + epi(y)ξi(y)

(B.20)

It denotes the labor income share.

3. Hold w and rentention rate constant and change the r, then

m′(li + αdli) =wxi{1− T ′[(r + αdr)k + wxi(li + αdli)]}

m′(li) +m′′(li)αdli =wxi[1− T ′(yi)− T ′′(yi)(αkdr + αwxidli)]}

m′′(li)dli =− wxiT ′′(yi)(kdr + wxidli)

[m′′(li) + w2x2
iT
′′(yi)]dli =− wxiT ′′(yi)kdr

(B.21)

Then

εlir =
dli
dr

r

li
= − wxT ′′(yi)k

m′′(li) + w2x2
iT
′′(yi)

r

li
=

m′(li)
lim′′(li)

yiT
′′(yi)

1−T ′(yi)
rk
yi

1 + wxili
yi

m′(li)
lim′′(li)

yiT ′′(yi)
1−T ′(yi)

= −epi(y)(1− ξi(y))

1 + epi(y)ξi(y)
(B.22)

4. Change the tax formula, then

m′(li+αdli) = (w+αdw)xi{1−T ′[k(r+αdr)+(w+αdw)xi(li+dli)]−αh[k(r+αdr)+(w+αdw)xi(li+dli)]}

(B.23)
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A first-order taylor expansion implies

m′(li)+m
′′(li)αdli = wxi[1−T ′(yi)−αT ′′(yi)dyi−αh′(yi)]+αxidw[1−T ′(yi)−αT ′′(yi)dyi−αh′(yi)]

(B.24)

Then

[m′′(li) + T ′′(yi)w
2x2

i ]dli = −[T ′′(yi)(kdr + xilidw) + h′(yi)]wxi + [1− T ′(yi)]xidw (B.25)

This yields the solution for dli(T ;h) as

dli(T ;h) =
(1− T ′(yi))xidw − T ′′(yi)(kdr + xilidw)wxi − h′(yi)wxi

m′′(li) + T ′′(yi)w2x2
i

=

1−T ′(yi)
m′′(li)

xidw − T ′′(yi)
1−T ′(yi)

m′(li)
m′′(li)

(kdr + xilidw)− h′(yi)
1−T ′(yi)

m′(li)
m′′(li)

1 + T ′′(yi)
1−T ′(yi)

m′(li)
m′′(li)

wxi

=

m′(li)
m′′(li)li

xidw
wxi

li − T ′′(yi)yi
1−T ′(yi)

m′(li)
m′′(li)li

kdr+xilidw
yi

li − h′(yi)
1−T ′(yi)

m′(li)
m′′(li)li

li

1 + T ′′(yi)yi
1−T ′(yi)

m′(li)
m′′(li)li

wxili
yi

=εliw
li
w
dw + εlir

li
r
dr − εli1−T ′

h′(yi)li
1− T ′(yi)

(B.26)

B.2 Incidence on consumption

Recall the drift term

si = yi − c̃i − δk − T (yi)−m(li) (B.27)

And the perturbation on it shows that

si+αdsi = yi+αdyi−(c̃i+αdc̃i)−δk−[T (yi+αdyi)+αh(yi+αdyi)]−m(li+αdli)+dR (B.28)

Let (B.27) minus (B.2), then

dsi =dyi − dc̃i − T ′(yi)dyi − h(yi)−m′(li)dli + dR

=(1− T ′(yi))(kdr + xilidw)− dc̃i − h+ dR
(B.29)

here we use

dyi = kdr(T ;h) + xilidw(T ;h) + wxidli(T ;h) (B.30)
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then we obtain

dc̃i = (1− T ′(yi))(kdr + xilidw)− dsi − h+ dR (B.31)

B.3 Incidence on government revenue

The government revenue is shown in (10), and the perurbation is

R(T + αh) = R(T ) + αdR (B.32)

Then

αdR =
2∑
i=1

∫
{T [(r + αdr)k + (w + αdw)xi(li + αli)] + αh[(r + αdr)k + (w + αdw)xi(li + αli)]}gi(k)dk

−
2∑
i=1

∫
T (rk + wxili)gi(k)dk

=
2∑
i=1

∫
[αT ′(yi)(kdr + xilidw + wxidli) + αh(yi)]gi(k)dk

(B.33)
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Then

dR =
2∑
i=1

∫
[T ′(yi)(kdr + xilidw + wxidli) + h(yi)]gi(k)dk

=
2∑
i=1

∫ ∞
k∗

gi(k)

1− F (y∗)
dk + dr

2∑
i=1

∫
T ′(yi)kgi(k)dk + dw

2∑
i=1

∫
T ′(yi)xiligi(k)dk

+
2∑
i=1

∫
T ′(yi)

[
εliw
li
w
dw + εlir

li
r
dr − εli1−T ′

h′(yi)li
1− T ′(yi)

]
wxigi(k)dk

=
2∑
i=1

∫ ∞
k∗

gi(k)

1− F (y∗)
dk + dr

2∑
i=1

∫ ∞
0

[
1 +

ξi(y)

1− ξi(y)
εlir

]
kT ′(yi)gi(k)dk

+ dw
2∑
i=1

∫ ∞
0

(1 + εliw)xiliT
′(yi)gi(k)dk −

2∑
i=1

∫ ∞
0

εli1−T ′
T ′(yi)

1− T ′(yi)
δy∗(yi)

1− F (y∗)
wxiligi(k)dk

=
2∑
i=1

∫ ∞
k∗

gi(k)

1− F (y∗)
dk + dr

2∑
i=1

∫ ∞
0

[
1 +

ξi(y)

1− ξi(y)
εlir

]
kT ′(yi)gi(k)dk

+ dw
2∑
i=1

∫ ∞
0

(1 + εliw)xiliT
′(yi)gi(k)dk −

2∑
i=1

εli1−T ′(y
∗)

T ′(y∗)

1− T ′(y∗)
gi(

y∗−wxili
r

)

1− F (y∗)
wxili

=
2∑
i=1

∫ ∞
k∗

gi(k)

1− F (y∗)
dk + dr

2∑
i=1

∫ ∞
0

[
1 +

ξi(y)

1− ξi(y)
εlir

]
kT ′(yi)gi(k)dk

+ dw
2∑
i=1

∫ ∞
0

(1 + εliw)xiliT
′(yi)gi(k)dk − T ′(y∗)

1− T ′(y∗)
y∗f(y∗)

1− F (y∗)

2∑
i=1

gi(
y∗−wxili

r
)

f(y∗)
ξi(y

∗)εli1−T ′(y
∗)

(B.34)

where F (y) is the CDF of total income, and f(y) is the PDF. ξi(y), εli1−T ′ , ε
li
l , εlir can be seen

in A.1.

B.4 Incidence on welfare function

The incidence on agents’ consumption is

dc̃i = (1− T ′)(kdr + xilidw)− dsi − h+ dR (B.35)
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Recalling the expression of dW , we have

dW (T ;h) =
1

ρ

2∑
i=1

∫ ∞
0

[u′(c̃i)dc̃i(T ;h)gi(k) + u(c̃i)dgi(T ;h)] dk

=
1

ρ

2∑
i=1

∫ ∞
0

u′(c̃i)[(1− T ′)(kdr + xilidw) + dR]gi(k)dk

− 1

ρ

2∑
i=1

∫ ∞
0

u′(c̃i)[dsi(T ;h) + h]gi(k)dk

+
1

ρ

2∑
i=1

∫ ∞
0

u(c̃i)dgi(T ;h)dk

(B.36)

By imposing dW = 0, we can obtain the optimal income tax rate on y∗. By imposing

dW = 0, we can obtain the optimal marginal tax rate at income level y∗. Note that h′(y) =

1
1−F (y∗)

δy∗(y), move the part contains h′(y) to the left side and compute integration involving

the Dirac function

2∑
i=1

∫ ∞
k∗

u′(c̃i)gi(k)

1− F (y∗)
dk +

2∑
i=1

∫ ∞
0

u′(c̃i)dsi(T ;h)gi(k)dk

=
2∑
i=1

∫ ∞
0

[u′(c̃i)(1− T ′(yi))(kdr + xilidw)gi(k) + u(c̃i)dgi(T ;h)]dk + dR
2∑
i=1

∫ ∞
0

u′(c̃i)gidk

=
2∑
i=1

∫ ∞
0

[u′(c̃i)(1− T ′(yi))(kdr + xilidw)gi(k) + u(c̃i)dgi(T ;h)]dk

+ ϕ
2∑
i=1

∫ ∞
k∗

gi(k)

1− F (y∗)
dk + ϕdr

2∑
i=1

∫ ∞
0

[
1 +

ξi(y)

1− ξi(y)
εlir

]
kT ′(yi)gi(k)dk

+ ϕdw
2∑
i=1

∫ ∞
0

(1 + εliw)xiliT
′(yi)gi(k)dk − ϕ T ′(y∗)

1− T ′(y∗)
y∗f(y∗)

1− F (y∗)

2∑
i=1

gi(
y∗−wxili

r
)

f(y∗)
ξi(y

∗)εli1−T ′(y
∗)

(B.37)
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where ϕ =
∑2

i=1

∫∞
0
u′(c̃i)gi(k)dk. Then we obtain

ϕ
T ′(y∗)

1− T ′(y∗)
y∗f(y∗)

1− F (y∗)

2∑
i=1

gi(
y∗−wxili

r
)

f(y∗)
ξi(y

∗)εli1−T ′(y
∗)

=ϕ
2∑
i=1

∫ ∞
k∗

(1− u′(c̃i)

ϕ
)

gi(k)

1− F (y∗)
dk

+
2∑
i=1

∫ ∞
k∗

u′(c̃i)(1− T ′)(kdr + xilidw)gidk

+ ϕdw
2∑
i=1

∫ ∞
0

(1 + εliw)xiliT
′(yi)gi(k)dk

+ ϕdw
2∑
i=1

∫ ∞
0

(1 + εliw)xiliT
′(yi)gi(k)dk

+ ϕdr
2∑
i=1

∫ ∞
0

[
1 +

ξi(y)

1− ξi(y)
εlir

]
kT ′(yi)gi(k)dk

−
2∑
i=1

∫ ∞
0

u′(c̃i)gi(k)dsi(T ;h)dk

+
2∑
i=1

∫ ∞
0

u(c̃i)dgi(T ;h)dk

(B.38)
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After simplifying we have

T ′ (y∗)

1− T ′ (y∗)
=

1− F (y∗)

y∗f(y∗)
× Γ(y∗)× [A (y∗) + B (y∗) + C (y∗) +D (y∗) + E (y∗) + F (y∗)]

where Γ(y∗) =
1∑2

i=1

gi(
y∗−wxili

r
)

f(y∗)
ξi(y∗)ε

li
1−T ′(y

∗)

A (y∗) =
2∑
i=1

∫ ∞
k∗

[
1− u′(c̃i)

ϕ

]
gi(k)

1− F (y∗)
dk

B (y∗) =
1

ϕ

2∑
i=1

∫ ∞
0

u′(c̃i)(1− T ′(yi))(kdr + xilidw)gidk

C (y∗) = dw
2∑
i=1

∫ ∞
0

(1 + εliw)xiliT
′(yi)gi(k)dk

D (y∗) = dr
2∑
i=1

∫ ∞
0

[
1 +

ξi(y)

1− ξi(y)
εlir

]
kT ′(yi)gi(k)dk

E (y∗) = − 1

ϕ

2∑
i=1

∫ ∞
0

u′(c̃i)dsi(T ;h)gidk

F (y∗) =
2∑
i=1

∫ ∞
0

u(c̃i)dgi(T ;h)dk

(B.39)

C A brief description of the algorithm

1. Guess a initial marginal tax schedule. Here, we use a CRP form.

2. Given that initial tax schedule, calculate the lump-sum transfer that satisfies the gov-

ernment budget constraint.

3. Given the tax schedule, solve a steady-state equilibrium.

4. Consider a tax reform of increasing marginal tax rate at each grid point, and compute

the new steady state at each grid point.

5. Then, use the tax formula to compute the right-hand side (RHS) and thus an alternative

marginal tax schedule.

6. Check if || T ′

1−T ′ − RHS|| < tol. If not, go to step 3 with an alternative tax schedule.

This loop is repeated until a fixed-point optimal tax schedule is found.
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D Derivations in Section 4

D.1 Joint probability distribution

The joint probability distribution of idiosyncratic kt and aggregate Xt goes as following

Pr(kt, Xt)ψ(kt+∆t, Xt+∆t|kt, Xt) =Pr(kt+∆t, Xt+∆t, kt, Xt)

=Pr(kt+∆t|Xt+∆t, kt, Xt)Pr(Xt+∆t, kt, Xt)

=Pr(kt+∆t|Xt+∆t, kt, Xt)Pr(Xt+∆t|kt, Xt)Pr(kt, Xt)

=Pr(kt+∆t|kt)Pr(Xt+∆t|Xt)Pr(kt, Xt)

(D.40)

so we have

ψ(kt+∆t, Xt+∆t|kt, Xt) =Pr(kt+∆t|kt)Pr(Xt+∆t|Xt) (D.41)

We do this split in order to illustrate the genuine law of motion after the introduce of

aggregate shock.

D.2 Geometric Brownian diffusion in continuous time

Start from (32)

dkt = sitdt+ σ1ktdBt (D.42)

Rearrange
dkt
kt

= s̃itdt+ σ1dBt (D.43)

here we denote

s̃it =
sit
kt

(D.44)

Obviously, it is an Itô Process. We let f = log kt and apply Itô Lemma

df = d log kt =

(
s̃it(kt)−

1

2
σ2

1

)
dt+ σ1dBt (D.45)

With the properties of Brownian motion, we know that within any time increment ∆t, the

evolution of log kt follows normal distribution

log kt+∆t ∼ N
[
log kt + ŝit(kt), σ̂

2
1

]
(D.46)
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with the denotation

ŝit(kt) =

[
s̃it(kt)−

1

2
σ2

1

]
∆t, σ̂1 = σ1

√
∆t (D.47)

then with the definition of its probability density function, we obtain

Pr(kt+∆t|kt) =
1

kt+∆tσ̂1

√
2π
e
−

(
log

(
kt+∆t

kte
ŝit(kt)

))2

2σ̂2
1 (D.48)

The above derivations and treatments are refered to the counterparts in Farhi (2013).

By the way, we can proof that when ∆t → 0, the exponential function goes to 1. It is

obvious that the numerator and the denominator of the exponent part are both infinitesimal

when ∆t→ 0, with L’Hospital’s rule we obtain

−
2 log

(
kt+∆t

kteŝit(kt)

)
2σ2

1

eŝit
(
− dŝit
d∆t

)
=

log
(

kt+∆t

kteŝit(kt)

)
eŝit
[
s̃it(kt)− 1

2
σ2

1

]
σ2

1

= 0 (D.49)

where

log

(
kt+∆t

kteŝit(kt)

)
= log

kt+∆t

kt
−
[
s̃it(kt)−

1

2
σ2

1

]
∆t = 0 (D.50)

So we obtain

e
−

(
log

(
kt+∆t

kte
ŝt(kt)

))2

2σ̂2
1 → 1, when ∆t→ 0 (D.51)

D.3 Envelope condition

For first-order condition of c̃t, the derivative of ψ is as follows

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂c̃t

=Pr(Xt+∆t|Xt)
∂Pr(kt+∆t|kt)

∂c̃t

=Pr(Xt+∆t|Xt)
1

kt+∆tσ̂1

√
2π
e
−

(
log

(
kt+∆t

kte
ŝit(kt)

))2

2σ̂2
1

log
(

kt+∆t

kteŝit(kt)

)
ktσ̂2

1

kt
∂ŝit
∂c̃t

=Pr(Xt+∆t|Xt)Pr(kt+∆t|kt)
log
(

kt+∆t

kteŝit(kt)

)
ktσ̂2

1

kt
∂ŝit
∂c̃t

=ψ(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Φi(kt)

(D.52)
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here we let

Ωi(kt) =
log
(

kt+∆t

kteŝi(kt)

)
ktσ̂2

1

(D.53)

and

Φi(kt) = kt
∂ŝit
∂c̃it

= −∆t, (D.54)

where
∂ŝit
∂c̃it

=
∂(s̃it − 1

2
σ2

1)∆t

∂c̃it

=∂(
yit − c̃it −m(lit)− Tit − δkt

kt
− 1

2
σ2

1)/∂c̃it ·∆t

=− 1

kt
∆t.

(D.55)

Recall that

sit = yit − c̃it −m(lit)− T (yit)− δkt. (D.56)

By the way, here we can proof that when ∆t, the limit of Ω is finite. With L’Hospital’s rule

we obtain
log
(

kt+∆t

kteŝit(kt)

)
ktσ̂2

1

=
log kt+∆t − log kt − ŝit

ktσ2
1∆t

= −
s̃it − 1

2
σ2

1

ktσ2
1

6= 0 (D.57)

For first-order condition of lt, the derivative of g is as follows

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂lit

=Pr(Xt+∆t|Xt)
∂Pr(kt+∆t|kt)

∂lit

=Pr(Xt+∆t|Xt)
1

kt+∆tσ̂1

√
2π
e
−

(
log

(
kt+∆t

kte
ŝit(kt)

))2

2σ̂2
1

log
(

kt+∆t

kteŝit(kt)

)
ktσ̂2

1

kt
∂ŝit
∂lit

=Pr(Xt+∆t|Xt)Pr(kt+∆t|kt)
log
(

kt+∆t

kteŝit(kt)

)
ktσ̂2

1

kt
∂ŝit
∂lit

=ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Πi(kt)

(D.58)

where

Πi(kt) = kt
∂ŝit
∂lit

=
[
wxi (1− T ′(yit))− χl

1
e
it

]
∆t (D.59)
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with

∂ŝit
∂lit

=
∂(s̃it − 1

2
σ2

1)∆t

∂lit

=∂

[
rtkt + wxilit − c̃it −m(lit)− T (rtkt + wxilit)− δkt

kt
− 1

2
σ2

1

]
/∂lit ·∆t

=
1

kt

[
wxi − χl

1
e
it −

∂T (rtkt + wxilit)

∂(rtkt + wxlt)

∂(rtkt + wxlt)

∂lt

]
∆t

=
1

kt

[
wxi − χl

1
e
it − wxi

∂T (rtkt + wxilit)

∂(rtkt + wxilit)

]
∆t

(D.60)

Then, we take derivative on (34) with respect to kt

∂v(kt, Xt)

∂kt

=u′(c̃it)
∂c̃it
∂kt

∆t+ (1− ρ∆t)

∫∫
v(kt+∆t, Xt+∆t)

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂kt
dkt+∆tdXt+∆t

=u′(c̃it)
∂c̃it
∂kt

∆t+ (1− ρ∆t)

∫∫
v(kt+∆t, Xt+∆t)Pr(Xt+∆t|Xt)

∂Pr(kt+∆t|kt)
∂kt

dkt+∆tdXt+∆t

=u′(c̃it)
∂c̃it
∂kt

∆t+ (1− ρ∆t)

∫∫
v(kt+∆t, Xt+∆t)ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Ψi(kt)dkt+∆tdXt+∆t

The derivative derives from

∂ψi(kt+∆t, Xt+∆t|kt, Xt)

∂kt

=Pr(Xt+∆t|Xt)
∂Pr(kt+∆t|kt)

∂kt

=Pr(Xt+∆t|Xt)
1

kt+∆tσ̂1

√
2π
e
−

(
log

(
kt+∆t

kte
ŝit(kt)

))2

2σ̂2
1

log
(

kt+∆t

kteŝit(kt)

)
ktσ̂2

1

(
1 + kt

∂ŝit
∂kt

)
=Pr(Xt+∆t|Xt)Pr(kt+∆t|kt)Ωi(kt)Ψi(kt)

=ψi(kt+∆t, Xt+∆t|kt, Xt)Ωi(kt)Ψi(kt)

(D.61)

where

Ψi(kt) = 1 + kt
∂ŝit
∂kt

(D.62)
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with

∂ŝit
∂kt

=
∂(s̃it − 1

2
σ2

1)∆t

∂kt

=∂

[
rtkt + wxilit − c̃it −m(lit)− T (rtkt + wxilit)− δkt

kt
− 1

2
σ2

1

]
/∂kt ·∆t

=
1

k2
t

[
wxi

(
∂lit
∂kt

kt − lit
)
−
(
∂c̃it
∂kt

kt − c̃it
)
−
(
∂m(lit)

∂lit

∂lit
∂kt

kt −m(lit)

)
−
(

∂T (yit)

∂(rtkt + wxilit)

(
rt + wxi

∂lit
∂kt

)
kt − T (yit)

)]
∆t

=
1

kt

[
wx

∂lit
∂kt
− T ′(yit)

(
rt + wxi

∂lit
∂kt

)
− ∂c̃it
∂kt
− ∂m(lit)

∂lit

∂lit
∂kt

]
∆t− 1

k2
t

[wxilit − c̃it −m(lit)− T (yit)]∆t

=
1

kt

[
wxi

∂lit
∂kt
−
(
rt + wxi

∂lit
∂kt

)
T ′(yit)−

∂c̃t
∂kt
− χl

1
e
it

∂lt
∂kt
− 1

kt
(wxilit − c̃it −m(lit)− T (yit))

]
∆t

=
1

kt

[
rt (1− T ′(yit))− δ − s̃it(kt) +

(
wxi (1− T ′(yit))− χl

1
e
it

) ∂lit
∂kt
− ∂c̃it
∂kt

]
∆t

D.4 Derivations of recursive Γt

First, we take derivative of (35) with respect to kt

ψikt(kt+∆t, Xt+∆t|kt, Xt)

=Pr(Xt+∆t|Xt)
1

kt+∆tσ̂1

√
2π
e
−

(
log

(
kt+∆t

kte
ŝit(kt)

))2

2σ̂2
1

log
(

kt+∆t

kteŝit(kt)

)
ktσ̂2

1

(
1 + kt

∂ŝit
∂kt

)

=ψi(kt+∆t, Xt+∆t|kt, Xt)
log
(

kt+∆t

kteŝit(kt)

)
ktσ̂2

1

(
1 + kt

∂ŝit
∂kt

)

=ψi(kt+∆t, Xt+∆t|kt, Xt)
log
(

kt+∆t

kteŝit(kt)

)
ktσ̂2

1

Ψi(kt)

(D.63)
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then we take derivative of (35) with respect to kt+∆t

ψkt+∆t
(kt+∆t, Xt+∆t|kt, Xt)

=− Pr(Xt+∆t|Xt)
1

kt+∆tσ̂1

√
2π
e
−

(
log

(
kt+∆t

kte
ŝit(kt)

))2

2σ̂2
1

1 +
log
(

kt+∆t

kteŝit(kt)

)
σ̂2

1

 1

kt+∆t

=− ψ(kt+∆t, Xt+∆t|kt, Xt)

1 +
log
(

kt+∆t

kteŝit(kt)

)
σ̂2

1

 1

kt+∆t

(D.64)

From (D.64) we have

ψ(kt+∆t, Xt+∆t|kt, Xt)+kt+∆tψt+∆t(kt+∆t, Xt+∆t|kt, Xt) = −ψ(kt+∆t, Xt+∆t|kt, Xt)
log
(

kt+∆t

kteŝit(kt)

)
σ̂2

1

(D.65)

introduce (D.65) into (D.63) and rearrange, we have

ktψkt(kt+∆t, Xt+∆t|kt, Xt) =−Ψi(kt)
[
kt+∆tψkt+∆t

(kt+∆t, Xt+∆t|kt, Xt) + ψ(kt+∆t, Xt+∆t|kt, Xt)
]

(D.66)

Then we can construct

ktΓt =
Θ(kt)

Ψ(kt)

∫∫
v(kt+∆t, Xt+∆t)ktψkt(kt+∆t, Xt+∆t|kt, Xt)dkt+∆tdXt+∆t

=− Θ(kt)

Ψ(kt)

∫∫
v(kt+∆t, Xt+∆t)Ψ(kt)∆t

(
kt+∆tψkt+∆t

+ ψ
)
dkt+∆tdXt+∆t

=−Θ(kt)

∫∫
v(kt+∆t, Xt+∆t)

(
kt+∆tψkt+∆t

+ ψ
)
dkt+∆tdXt+∆t

=−Θ(kt)

∫∫
v(kt+∆t, Xt+∆t)d[kt+∆tψ(kt+∆t, Xt+∆t|kt, Xt)]

=−Θ(kt)v(kt+∆t, Xt+∆t)kt+∆tψ(kt+∆t, Xt+∆t|kt, Xt)

∣∣∣∣kmax
kmin

+ Θ(kt)

∫∫
kt+∆tψ(kt+∆t, Xt+∆t|kt, Xt)dv(kt+∆t, Xt+∆t)

=Θ(kt)

∫∫
kt+∆tψ(kt+∆t, Xt+∆t|kt, Xt)dv(kt+∆t, Xt+∆t)

=Θ(kt)

∫∫
kt+∆tψ(kt+∆t, Xt+∆t|kt, Xt)

∂vt+∆t

∂kt+∆t

dkt+∆tdXt+∆t

=Θ(kt)

∫∫
kt+∆tΓt+∆tψ(kt+∆t, Xt+∆t|kt, Xt)dkt+∆tdXt+∆t.
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D.5 Martingale representation theorem

Start from

ktΓt =

∫ [∫
Θ(kt)kt+∆tΓt+∆t Pr(kt+∆t|kt)dkt+∆t

]
Pr(Xt+∆t|Xt)dXt+∆t (D.67)

Transpose

∫ [∫
Θ(kt)kt+∆tΓt+∆t Pr(kt+∆t|kt)dkt+∆t − ktΓt

]
Pr(Xt+∆t|Xt)dXt+∆t = 0 (D.68)

Consider the outer integration, it is measurable on the set of rt, so we can apply martingale

representation theorem and write

∫
Θ(kt)kt+∆tΓt+∆t Pr(kt+∆t|kt)dkt+∆t − ktΓt = σWσ2dWt (D.69)

where Wt is the Brownian motion of aggregate shock. Then we continue to transpose

∫
[Θ(kt)kt+∆tΓt+∆t Pr(kt+∆t|kt)− ktΓt − σWσ2dWt] dkt+∆t = 0 (D.70)

This kind of integration is measurablehe on the set of kt, so we can apply martingale repre-

sentation theorem again and obtain

Θ(kt)kt+∆tΓt+∆t − ktΓt − σWσ2dWt = σBσ1ktdBt (D.71)

here σB and σW are some functions of state variables (kt,Γt).

D.6 Derivations of dΓt

Start from

Θ(kt)kt+∆tΓt+∆t − ktΓt − σWσ2dWt = σBσ1ktdBt (D.72)

Rearrange

kt+∆tΓt+∆t − ktΓt = kt+∆tΓt+∆t −Θ(kt)kt+∆tΓt+∆t + σBσ1ktdBt + σWσ2dWt (D.73)
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then

d(ktΓt) = [(1−Θ(kt))(ktΓt)]dt+ σBσ1ktdBt + σWσ2dWt (D.74)

WIth Itô Lemma, we have

d(ktΓt) = ktdΓt + Γtdkt + dktdΓt (D.75)

Here we suppose

dΓt = µΓdt+ σΓ,BdBt + σΓ,WdWt (D.76)

So we have

d(ktΓt) =kt(µΓdt+ σΓ,BdBt + σΓ,WdWt) + Γt(stdt+ σ1ktdBt)

+ (stdt+ σ1ktdBt)(µΓtdt+ σΓ,BdBt + σΓ,WdWt)

=ktµΓdt+ ktσΓ,BdBt + ktσΓ,WdWt + stΓtdt+ σ1ktΓtdBt + σ1ktσΓ,Bdt

=(stΓt + ktµΓ + σ1ktσΓ,B)dt+ (σ1ktΓt + ktσΓ,B)dBt + ktσΓ,WdWt

(D.77)

Compare (D.77) with (D.74) , we obtain

(1−Θ(kt))(ktΓt) =stΓt + ktµΓ + σ1ktσΓ,B

σBσ1kt =σ1ktΓt + ktσΓ,B

σWσ2 =ktσΓ,W

(D.78)

we can solve that

σΓ,B =σ1(σB − Γt) = σ1σ̂B

σΓ,W =
σWσ2

kt
= σ2σ̂W

(D.79)

and

µΓ = [δ − rt (1− T ′(yt))] Γt − σ1σΓ,B

= [δ − rt (1− T ′(yt))] Γt − σ2
1σ̂B

(D.80)

Finally, we obtain

dΓt =
{

[δ − rt (1− T ′(yt))] Γt − σ2
1σ̂B

}
dt+ σ1σ̂BdBt + σ2σ̂WdWt (D.81)
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where σ̂B and σ̂W are functions of the state variables (Γt, kt).

D.7 Derivations of two-dimensional KFE

We already know that

dΓt =
{

[δ − rt (1− T ′(yt))] Γt − σ2
1σ̂B

}
dt+ σ1σ̂BdBt + σ2σ̂WdWt

=µtdt+ σΓ,BdBt + σΓ,WdWt

(D.82)

If idiosyncratic labor productivity shock xt = xi, we have

dkt = sitdt+ σ1ktdBt (D.83)

where sit = yit − c̃it −m(lit)− T (yit)− δkt, for i = 1, 2. Let

φ1(k,Γ) = φ(x1, k,Γ), φ2(k,Γ) = φ(x2, k,Γ) (D.84)

We assume that those functions are twice continuously differentiable functions with com-

pact support in [0,∞). For function φ(x, k,Γ), we have

E[φ(xt, kt,Γt)]

=

∫
φ1(k,Γ)Gt(i = 1, k,Γ)dkdΓ +

∫
φ2(k,Γ)Gt(i = 2, k,Γ)dkdΓ,

(D.85)

and

E[φ(xt+∆t, kt+∆t,Γt+∆t)]

=

∫
φ1(k,Γ)Gt+∆t(i = 1, k,Γ)dkdΓ +

∫
φ2(k,Γ)Gt+∆t(i = 2, k,Γ)dkdΓ

(D.86)
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On the one hand, we have

E[φ(xt+∆t, kt+∆t,Γt+∆t)− φ(xt, kt,Γt)]

∆t

=
1

∆t


∫
φ1(k,Γ)Gt+∆t(i = 1, k,Γ)dkdΓ +

∫
φ2(k,Γ)Gt+∆t(i = 2, k,Γ)dkdΓ

−
∫
φ1(k,Γ)Gt(i = 1, k,Γ)dkdΓ−

∫
φ2(k,Γ)Gt(i = 2, k,Γ)dkdΓ


=

1

∆t


∫
φ1(k,Γ)[Gt+∆t(i = 1, k,Γ)− Gt(i = 1, k,Γ)]dkdΓ

+
∫
φ2(k,Γ)[Gt+∆t(i = 2, k,Γ)− Gt(i = 2, k,Γ)]dkdΓ


=

∫
φ1(k,Γ)

Gt+∆t(i = 1, k,Γ)− Gt(i = 1, k,Γ)

∆t
dkdΓ

+

∫
φ2(k,Γ)

Gt+∆t(i = 2, k,Γ)− Gt(i = 2, k,Γ)

∆t
dkdΓ

=

∫
φ1(k,Γ)

∂Gt(i = 1, k,Γ)

∂t
dkdΓ +

∫
φ2(k,Γ)

∂Gt(i = 2, k,Γ)

∂t
dkdΓ

(D.87)

On the other hand, by Itô’s Lemma we have

dφi(kt,Γt) =φk(i, kt,Γt)dk + φΓ(i, kt,Γt)dΓ +
1

2
φkk(i, kt,Γt)(dk)2 +

1

2
φΓΓ(i, kt,Γt)(dΓ)2

=ϕk(i, kt,Γt)(sitdt+ σ1ktdBt) + φΓ(i, kt,Γt)(µitdt+ σΓ,BdBt + σΓ,WdWt)

+
1

2
φkk(i, kt,Γt)(sitdt+ σ1ktdBt)

2 +
1

2
ϕΓΓ(i, kt,Γt)(µitdt+ σΓ,BdBt + σΓ,WdWt)

2

=φk(i, kt,Γt)sitdt+ φk(i, kt,Γt)σ1ktdBt

+ φΓ(i, kt,Γt)µitdt+ φΓ(i, kt,Γt)σΓ,BdBt + φΓ(i, kt,Γt)σΓ,WdWt

+
1

2
φkk(i, kt,Γt)σ

2
1k

2
t dt+

1

2
φΓΓ(i, kt,Γt)σ

2
Γ,Bdt+

1

2
φΓΓ(i, kt,Γt)σ

2
Γ,Wdt

=

[
φk(i, kt,Γt)sit + φΓ(i, kt,Γt)µit +

1

2
φkk(i, kt,Γt)σ

2
1k

2
t +

1

2
φΓΓ(i, kt,Γt)(σ

2
Γ,B + σ2

Γ,W )

]
dt

+ [φk(i, kt,Γt)σk,B + φΓ(i, kt,Γt)σΓ,B] dBt + φΓ(i, kt,Γt)σΓ,WdWt

(D.88)
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Thus we have

E[φ(xt+∆t, kt+∆t,Γt+∆t)− φ(xt, kt,Γt)]

∆t

=
1

∆t
{E(E[φ(xt+∆t, kt+∆t,Γt+∆t|xt, kt,Γt)])− E[φ(xt, kt,Γt)]}

=
1

∆t
E {E[φ(xt+∆t, kt+∆t,Γt+∆t|kt,Γt)]− φ(xt, kt,Γt)}

=
1

∆t


∫
{E[φ(kt+∆t,Γt+∆t|i = 1, kt,Γt)]− φ1(k,Γ)} Gt(i = 1, k,Γ)dkdΓ

+
∫
{E[φ(kt+∆t,Γt+∆t|i = 2, kt,Γt)]− φ2(k,Γ)} Gt(i = 2, k,Γ)dkdΓ


=

∫
[φ(kt+∆t,Γt+∆t|i = 1, kt,Γt)− φ1(k,Γ)

∆t
Gt(i = 1, k,Γ)dkdΓ

+

∫
[φ(kt+∆t,Γt+∆t|i = 2, kt,Γt)− φ2(k,Γ)

∆t
Gt(i = 2, k,Γ)dkdΓ

=

∫
dφ1(kt,Γt)Gt(i = 1, k,Γ)dkdΓ +

∫
dφ2(kt,Γt)Gt(i = 2, k,Γ)dkdΓ

=

∫ [
φ1
ks1t + φ1

Γµ1t +
1

2
φ1
kkσ

2
1k

2
t +

1

2
φ1

ΓΓ(σ2
Γ,B + σ2

Γ,W )− λ1φ
1(k,Γ) + λ1φ

2(k,Γ)

]
Gt(i = 1, k,Γ)dkdΓ

+

∫ [
φ2
ks2t + φ2

Γµ2t +
1

2
φ2
kkσ

2
1k

2
t +

1

2
φ2

ΓΓ(σ2
Γ,B + σ2

Γ,W )− λ2φ
2(k,Γ) + λ2φ

1(k,Γ)

]
Gt(i = 2, k,Γ)dkdΓ

(D.89)

Therefore, we have∫
φ1(k,Γ)

∂Gt(i = 1, k,Γ)

∂t
dkdΓ +

∫
φ2(k,Γ)

∂Gt(i = 2, k,Γ)

∂t
dkdΓ

=

∫
dφ1(kt,Γt)Gt(i = 1, k,Γ)dkdΓ +

∫
dφ2(kt,Γt)Gt(i = 2, k,Γ)dkdΓ

(D.90)

If we pick φ2(k,Γ) = 0 for all k and Γ, we have

∫
φ1(k,Γ)

∂Gt(i = 1, k,Γ)

∂t
dkdΓ

=

∫ [
φ1
ks1t + φ1

Γµ1t +
1

2
φ1
kkσ

2
1k

2
t +

1

2
φ1

ΓΓ(σ2
Γ,B + σ2

Γ,W )− λ1φ
1(k,Γ)

]
Gt(i = 1, k,Γ)dkdΓ

+

∫
λ2φ

1(k,Γ)Gt(i = 2, k,Γ)dkdΓ

=−
∫
φ1

∂

∂k
[s1tGt(i = 1, k,Γ)] dkdΓ−

∫
φ1

∂

∂Γ
[µ1tGt(i = 1, k,Γ)] dkdΓ

+
1

2

∫
φ1

∂2

∂k2

[
σ2

1k
2
tGt(i = 1, k,Γ)

]
dkdΓ +

1

2

∫
φ1

∂2

∂Γ2

[
(σ2

Γ,B + σ2
Γ,W )Gt(i = 1, k,Γ)

]
dkdΓ

−
∫
λ1φ1(k,Γ)Gt(i = 1, k,Γ)dkdΓ +

∫
λ2φ1(k,Γ)Gt(i = 2, k,Γ)dkdΓ

(D.91)
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Since φ1(k,Γ) is arbitrary, we obtain

∂Gt(i = 1, k,Γ)

∂t
=

1

2

∂2

∂k2

[
σ2

1k
2
tGt(i = 1, k,Γ)

]
+

1

2

∂2

∂Γ2

[
(σ2

Γ,B + σ2
Γ,W )Gt(i = 1, k,Γ)

]
− ∂

∂k
[s1tGt(i = 1, k,Γ)]− ∂

∂Γ
[µ1tGt(i = 1, k,Γ)]

− λ1Gt(i = 1, k,Γ) + λ2Gt(i = 2, k,Γ)

(D.92)

Similarly, Iif we pick φ1(k,Γ) = 0 for all k and Γ, we have

∫
φ2(k,Γ)

∂Gt(i = 2, k,Γ)

∂t
dkdΓ

=

∫ [
φ2
ks2t + φ2

Γµ2t +
1

2
φ2
kkσ

2
1k

2
t +

1

2
φ2

ΓΓ(σ2
Γ,B + σ2

Γ,W )− λ2φ
2(k,Γ)

]
Gt(2 = 1, k,Γ)dkdΓ

+

∫
λ1φ

2(k,Γ)Gt(i = 1, k,Γ)dkdΓ

=−
∫
φ2

∂

∂k
[s2tGt(i = 2, k,Γ)] dkdΓ−

∫
φ2

∂

∂Γ
[µ2tGt(i = 2, k,Γ)] dkdΓ

+
1

2

∫
φ2

∂2

∂k2

[
σ2

1k
2
tGt(i = 2, k,Γ)

]
dkdΓ +

1

2

∫
φ2

∂2

∂Γ2

[
(σ2

Γ,B + σ2
Γ,W )Gt(i = 2, k,Γ)

]
dkdΓ

−
∫
λ2φ2(k,Γ)Gt(i = 2, k,Γ)dkdΓ +

∫
λ1φ2(k,Γ)Gt(i = 2, k,Γ)dkdΓ

(D.93)

Since φ2(k,Γ) is arbitrary, we obtain

∂Gt(i = 2, k,Γ)

∂t
=

1

2

∂2

∂k2

[
σ2

1k
2
tGt(i = 2, k,Γ)

]
+

1

2

∂2

∂Γ2

[
(σ2

Γ,B + σ2
Γ,W )Gt(i = 2, k,Γ)

]
− ∂

∂k
[s2tGt(i = 2, k,Γ)]− ∂

∂Γ
[µ2tGt(i = 2, k,Γ)]

− λ2Gt(i = 2, k,Γ) + λ1Gt(i = 1, k,Γ)

(D.94)

Combine (D.92) and (D.94), we finally obtain

∂Gt(i, k,Γ)

∂t
=

1

2

∂2

∂k2

[
σ2

1k
2
tGt(i, k,Γ)

]
+

1

2

∂2

∂Γ2

[
(σ2

Γ,B + σ2
Γ,W )Gt(i, k,Γ)

]
− ∂

∂k
[sitGt(i, k,Γ)]− ∂

∂Γ
[µitGt(i, k,Γ)]− λiGt(i, k,Γ) + λ−iGt(−i, k,Γ)

(D.95)

for i = 1, 2.
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