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1 Introduction

In this study, we investigate the inequality implications of incentive-feasible

contracts, including optimal and nonoptimal contracts, when a trade-off

exists between rent extraction and efficiency. In our model, contracts pin

down the agent’s payment. Thus, contracts transform their types into in-

comes. Piketty and Saez (2003) demonstrate that the top income shares in

the United States have shown a rapidly increasing trend since the 1970s.

Piketty (2020) argues that ideology is an important force determining so-

cial inequality.1 We show that different contracts (i.e., mechanisms) have

distinct implications for income inequality.

There is a continuum of agents with measure 1 in the economy. An

agent’s marginal cost of production is θ. Even though the distribution of

Θ is common knowledge, the realization of θ is the agent’s private infor-

mation and is unobservable to the principal. We study the adverse selec-

tion problem and show that information rent increases income inequality.

We investigate the inequality implications of incentive-feasible contracts.

Incentive-feasible contracts satisfy both incentive and participation con-

straints. We find that information rents increase income inequality for

incentive-feasible contracts under certain conditions.

Furthermore, we find that output scheme determines the payment sched-

ule for any feasible contract. The payment includes two parts: production

cost and information rent. Information rent can be expressed as a func-

tion of output. Therefore, payment is a function of the output level. We

can characterize the payment schedule by investigating the properties of

the output scheme. In this sense, the output scheme contains sufficient

information to study the inequality implications of any feasible contract.

For the two-type distribution of Θ, we find that information rant in-

creases the income inequality. For the continuous type, we find that in-

formation rent increases the income inequality if ratio U(θ)
θq(θ)

is decreaseing

in θ. We verify that the constant elasticity distribution and the uniform

distribution imply the monotonicity of this ratio. We also find a sufficient

condition of the output scheme guaranteeing the monotonicity of this ratio.

1Ideology refers to ”a set of a priori plausible ideas and discourses describing how
society should be structured.”
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Using this sufficient condition, we find more examples of the distribution.

One of them has non-differentiable density function.

This study investigates income distribution when agents’ payments are

not in line with the marginal cost. In the neoclassical theory of distribu-

tion, however, actors receive payments according to their marginal product.

Information frictions create a wedge between agents’ payments and their

marginal costs. We find that information frictions cause inequality and

situations under which we can rank contracts according to their induced

income inequality. We rank the income equality of these contracts using

Lorenz ordering. The Lorenz curves can be ranked without intersections.

To investigate the effects of asymmetric information on income inequal-

ity, we identify the optimal contract under asymmetric information and

under complete information. Each contract induces income inequality in

the economy. We then compare inequality under asymmetric information

and under complete information. We find that inequality under asymmet-

ric information is less equal than that under complete information. The

optimal contract incurs less equal output distribution under incomplete in-

formation than under complete information. We invent a decomposition

technique, which separates two channels of output distortion and informa-

tion rent. Through both channels asymmetric information causes income

inequality. A less equal output distribution is the first channel, and infor-

mation rent further exaggerates income inequality.

We also investigate the transformation of the type distribution. Dis-

tribution G(θ) is derived by transformation G(θ) = F (θ)β for β ≥ 1. If

distribution F (θ) satisfies the condition by which the income distributions

under the second-best contract are less equal than those under the first-best

contract, then we can show that G(θ) also satisfies that condition

We study the inequality implications of incentive-feasible contracts.

However, the principal’s objective function in our model does not reflect

the equity concern. Baron and Myerson (1982) use the weighted sum of

expected gains for consumers and the expected profit for the firm as the

social welfare function. Specifically, they use a parameter to represent the

relative weight between consumers and the firm. Based on their study, we

introduce the parameter α ∈ [0, 1], regarding the concern for the agent’s

utility, into the social welfare function. The change in α represents changes
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in social norms. We find that inequality, measured by Lorenz ordering in

our model, increases if α decreases. Changes in social norms influence

inequality under the optimal contract. Piketty and Saez (2003) propose

that changes in social norms with regard to inequality partly explain the

increase in top wage shares since the 1970s.

1.1 Related literature

This study is also related to that of Lazear and Rosen (1981). Both stud-

ies compare income distributions under different contracts. Lazear and

Rosen (1981) investigate how different incentive-inducing contracts under

moral hazard generate different income distributions. Our model considers

income distributions implied by different incentive-inducing contracts un-

der adverse selection. Lazear and Rosen (1981) find that the tournament

mechanism can produce skewed income distribution. Similarly, we find that

the optimal contract under asymmetric information can generate income

distribution that is more dispersed than that under complete information.

Lazear and Rosen (1981) investigate aggregate welfare for two cases: that

of risk-neutral agents and that of risk-averse agents.2 We focus on the sit-

uation of risk-neutral agents; thus, the principal’s objective function does

not incorporate the risk-sharing incentive in our model.

Ekeland (2010) views the optimal contract as the transportation map.

It transforms the type ditribution into the salary distribution. We investi-

gate the inequality implications of the contract. We compare the income

distributions under different contracts and study how the income distribu-

tion changes when the type distribuiton changes. Campbell et al. (2021)

investigate principal-agent mean field games. The principal-agent mean

field game consists of an infinite number of agents and the principal cares

about the state distribution among agents. While Campbell et al. (2021)

consider dynamic games between the principal and agents, we concentrate

on a static situation and investigate the impacts of the contract on the

income distribution.

2Other studies of tournament-based compensation schemes include Green and Stokey
(1983) and Nalebuff and Stiglitz (1983). A tournament is a typical scheme in a moral
hazard problem with many agents. Similar to studies in the optimal taxation literature,
our model focuses on independent contracts among agents.
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Fernandez and Gali (1999) compare markets and tournaments in an

economy with borrowing constraints. They focus on the allocation effi-

ciency of these two mechanisms. As a complement to studies that compare

the efficiency of different mechanisms, our study compares income distribu-

tions under different contracts. Even though in Fernandez and Gali (1999)

the initial wealth distribution is exogenous, income distribution depends

on the mechanism in their model and is endogenous. In our model, income

distribution depends on contracts and is also endogenous.

Dworczak et al. (2021) investigate the role of price regulation redistri-

bution in a market with private information. While Dworczak et al. (2021)

study the optimal mechanism design, the policymakers in their model have

equity concern. The principal in our model has no equity concern. Thus, we

focus on the implications of optimal contracts that only reflect the produc-

tion (allocation) dimension. We intentionally shut down equity concern in

the contract design. In this sense, inequality is an “unintentional” product

of the contract’s incentive stimulus effects.

Mirrlees (1971) and Saez (2001) investigate optimal income taxation

in models with unobservable productivity. The objective function of the

principal (the government) is utilitarian; it is the sum of the utility func-

tion of all agents in the economy. The social welfare function incorporates

equity concern since the agent’s utility function is risk-averse and has cur-

vature. Our model differs from this in two aspects. First, the principal’s

objective function has no equity concern and only reflects the production

dimension. Second, the optimal taxation literature usually focuses on the

optimal tax scheme whereas we investigate the inequality implications of

incentive-feasible contracts, including optimal and nonoptimal contracts.

The rest of this paper is organized as follows. We present the inequality

implications of feasible contracts in Section 2. We investigate the effect

of information frictions on income distribution in Section 3. We study

the type-distribution transformation in Section 4. Section 5 contains an

analysis of social-norm change. Section 6 concludes the paper.
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2 Feasible contracts and inequality

There is a continuum of agents with measure 1 in the economy. The agent’s

marginal cost of production is θ. Even though the distribution of Θ is

common knowledge, the realization of θ is unobservable to the principal,

and it is the agent’s private information.

2.1 Characterization of feasible contracts

We assume the following:

Assumption 1: Θ follows a two-type discrete probability distribution,

Θ =

{
θ, with probability v

θ̄, with probabiity 1− v
.

Let ∆θ denote the spread of marginal cost,

∆θ = θ̄ − θ > 0.

There is no heterogeneity among principals. Principals run firms and hire

agents. The principal offers the contract {(t(θ), q(θ)); (t(θ̄), q(θ̄))}. The

agent chooses to claim his type θ̃. If θ̃ = θ, the agent receives payment t(θ)

and provides output q(θ) to the principal’s firm. If θ̃ = θ̄, the agent receives

payment t(θ̄) and provides output q(θ̄) to the principal’s firm. We view

t(θ) and t(θ̄) as agents’ incomes. The agents have quasi-linear preferences,

t(θ)− θq(θ) and t(θ̄)− θ̄q(θ̄). The incentive compatibility constraints are

t(θ)− θq(θ) ≥ t(θ̄)− θq(θ̄), (1)

and

t(θ̄)− θ̄q(θ̄) ≥ t(θ)− θ̄q(θ). (2)

Let t = t(θ), q = q(θ), t̄ = t(θ̄), and q̄ = q(θ̄). Thus, any pair of outputs

(q, q̄) that are implementable must satisfy the implementability condition

q ≥ q̄. From the efficiency perspective, the principal provides the θ−type

agents with incentives to induce them to produce more outputs than the

θ̄−type agents. Even though the principal’s objective function might only
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care about efficiency or rent extraction, the incentive compatibility condi-

tions themselves have income inequality implications. As in Laffont and

Martimort (2002), we define information rents as

U = t− θq,

for efficient agents and

Ū = t̄− θ̄q̄,

for inefficient agents. A feasible contract must satisfy incentive compati-

bility constraints (1) and (2) and participation constraints

U ≥ 0,

and

Ū ≥ 0.

The agent’s payment scheme consists of

t = θq + U,

and

t̄ = θ̄q̄ + Ū .

Unless we have Ū = U = 0, the agents’ payments are not in line with the

cost.

To maximize surplus, the principal sets Ū = 0. Thus, t̄ = θ̄q̄. For the

θ̄−type agent, payment t̄ equals production cost θ̄q̄. For the θ−type agent,

the incentive compatibility constraints cause a disparity between payments

and production costs, U = ∆θq̄.

Proposition 1 For the two-type case, we have t/t̄ ≥ (θq)/(θ̄q̄).

Owing to information rent, the income difference between these two

types is larger than the difference in production costs. To keep the incentive

compatibility constraint, the principals must provide sufficient incentives to

the θ−type agents. From an efficiency perspective, the principal provides

the θ−type agent payments greater than than the production costs. How-

ever, a feasible contract enlarges the income difference among agents. We
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use this two-type distribution as a simple motivation case. However, the

intuition that incentive compatibility constraints cause income differences

among agents holds in more general cases.

For the continuous type, we assume the following:

Assumption 1 ′: Θ has a cumulative distribution function F (θ) and a

probability density function f(θ) > 0 on [a, b].

The incentive compatibility condition is

t(θ)− θq(θ) ≥ t(θ̃)− θq(θ̃),

for any (θ, θ̃) in [a, b] × [a, b]. As in Myerson (1981), the local incentive

compatibility implies that q(θ) is nonincreasing in θ. Therefore, q(θ) is

almost everywhere differentiable on [a, b].

The information rent function is

U(θ) = t(θ)− θq(θ),

for θ in [a, b]. The incentive compatibility implies that U(θ) is continuous

and nonincreasing in θ. Therefore, U(θ) is almost everywhere differentiable

on [a, b],

U̇(θ) = −q(θ) a.e.

for θ in [a, b]. Thus, we have

U(θ̃) = U(θ)−
∫ θ̃

θ

q(τ)dτ,

for a ≤ θ ≤ θ̃ ≤ b. To maximize surplus, the principal sets U(b) = 0. Thus,

we have

U(θ) =

∫ b

θ

q(τ)dτ,

for θ in [a, b]. The relationship between information rent and the output is

due to the incentive compatibility condition. Thus, the shape of the output

scheme determines information rent.

Let ρ(θ) denote compensation for the cost of the θ−type agent, ρ(θ) =

θq(θ). We investigate the ratio of information rent to ρ(θ).
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Proposition 2 For the continuous-type case, if

θ2

θ1

≥
∫ b
θ2

q(τ)
q(θ2)

dτ∫ b
θ1

q(τ)
q(θ1)

dτ
,

for a ≤ θ1 ≤ θ2 ≤ b, then we have

t(θ1)

ρ(θ1)
≥ t(θ2)

ρ(θ2)
,

for a ≤ θ1 ≤ θ2 ≤ b.

Proof: For θ in [a, b], we have U(θ)
θq(θ)

=
∫ b
θ q(τ)dτ

θq(θ)
= 1

θ

∫ b
θ
q(τ)
q(θ)

dτ . Thus, we

have
U(θ1)

θ1q(θ1)
=

1

θ1

∫ b

θ1

q(τ)

q(θ1)
dτ ≥ 1

θ2

∫ b

θ2

q(τ)

q(θ2)
dτ =

U(θ2)

θ2q(θ2)
,

for a ≤ θ1 ≤ θ2 ≤ b, since θ2
θ1
≥

∫ b
θ2

q(τ)
q(θ2)

dτ∫ b
θ1

q(τ)
q(θ1)

dτ
for a ≤ θ1 ≤ θ2 ≤ b.

Therefore, we have
t(θ1)

ρ(θ1)
≥ t(θ2)

ρ(θ2)
,

for a ≤ θ1 ≤ θ2 ≤ b, Since t(θ)
ρ(θ)

= 1 + U(θ)
ρ(θ)

= 1 + U(θ)
θq(θ)

for θ in [a, b]. �

Since U(b) = 0, we have t(b) = ρ(b). For θ in [a, b], the payment function

is t (θ) and the cost compensation function is ρ (θ). If ρ(θ) is decreasing

in θ, payment schedule t(θ) is decreasing in θ since t(θ) = ρ(θ) + U(θ).

Proposition 2 states that t(θ) decreases relatively faster than ρ(θ).

We find that information rent increases the income inequality if ratio
U(θ)
θq(θ)

is decreaseing in θ. The wedge between the payment schedule and

the cost compensation is the information rent, which amplifies the income

difference among agents. We use the monotonicity of U(θ)
θq(θ)

to investigate

income inequality. For a ≤ θ1 ≤ θ2 ≤ b, t(θ1)
ρ(θ1)

≥ t(θ2)
ρ(θ2)

also implies that

information rent accounts for a higher proportion of income for the more

efficient agents (the agents with lower θ) since U(θ)
t(θ)

= 1− ρ(θ)
t(θ)

.

However, condition

θ2

θ1

≥
∫ b
θ2

q(τ)
q(θ2)

dτ∫ b
θ1

q(τ)
q(θ1)

dτ
,

for a ≤ θ1 ≤ θ2 ≤ b, might not be easily verified. We need to find a
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sufficient condition for it.

Lemma 1 For the continuous-type distribution, we have

U(θ1)

b− θ1

≥ U(θ2)

b− θ2

,

for a ≤ θ1 ≤ θ2 ≤ b.

Proof: Since q(θ) is nonincreasing in θ, we have
∫ θ2
θ1

q(τ)dτ

θ2−θ1 ≥ q(θ2) and∫ b
θ2
q(τ)dτ

b−θ2 ≤ q(θ2), for a ≤ θ1 ≤ θ2 ≤ b. Thus, we have

∫ θ2
θ1
q(τ)dτ

θ2 − θ1

≥
∫ b
θ2
q(τ)dτ

b− θ2

,

for a ≤ θ1 ≤ θ2 ≤ b. Furthermore, we have∫ b
θ1
q(τ)dτ

b− θ1

=
θ2 − θ1

b− θ1

∫ θ2
θ1
q(τ)dτ

θ2 − θ1

+
b− θ1

b− θ2

∫ b
θ2
q(τ)dτ

b− θ2

≥ θ2 − θ1

b− θ1

∫ b
θ2
q(τ)dτ

b− θ2

+
b− θ1

b− θ2

∫ b
θ2
q(τ)dτ

b− θ2

=

∫ b
θ2
q(τ)dτ

b− θ2

,

for a ≤ θ1 ≤ θ2 ≤ b. �

The result of this lemma is intuitive. Ratio U(θ)
b−θ represents the average

output level in [θ, b]. The average output level is decreasing since q(θ) is

nonincreasing in θ. Using this lemma, we find a sufficient condition for the

monotonicity of t(θ)
ρ(θ)

.

Proposition 3 For the continuous-type case, if

θ1q(θ1)

b− θ1

≤ θ2q(θ2)

b− θ2

,

for a ≤ θ1 ≤ θ2 ≤ b, then we have

t(θ1)

ρ(θ1)
≥ t(θ2)

ρ(θ2)
.

for a ≤ θ1 ≤ θ2 ≤ b.
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Proof: From Lemma 1 we have
∫ b
θ1
q(τ)dτ

b−θ1 ≥
∫ b
θ2
q(τ)dτ

b−θ2 , for a ≤ θ1 ≤ θ2 ≤
b. If θ1q(θ1)

b−θ1 ≤
θ2q(θ2)
b−θ2 , we have

∫ b
θ1
q(τ)dτ

b− θ1

b− θ1

θ1q(θ1)
≥
∫ b
θ2
q(τ)dτ

b− θ2

b− θ2

θ2q(θ2)
,

for a ≤ θ1 ≤ θ2 ≤ b. Thus, we have∫ b
θ1
q(τ)dτ

θ1q(θ1)
≥
∫ b
θ2
q(τ)dτ

θ2q(θ2)
,

for a ≤ θ1 ≤ θ2 ≤ b. Therefore, we have

t(θ1)

ρ(θ1)
≥ t(θ2)

ρ(θ2)
,

for a ≤ θ1 ≤ θ2 ≤ b, since t(θ)
ρ(θ)

= 1 + U(θ)
ρ(θ)

= 1 + U(θ)
θq(θ)

, for θ in [a, b]. �

Whether infromation rent increases the income inequality depends on

the shape of output scheme. Specifically, the monotonicity of θ
b−θq(θ) im-

plies that infromation rent increases the income inequality. To verify the

condition in Proposition 3 we do not have to calculate the integral involved

in Proposition 2. Note that θ
b−θ is increasing in θ, while q(θ) is nonin-

creasing in θ. Our sufficient condition requires that q(θ) does not decrease

too fast as θ increases. In Section 3 we see that the uniform distribution

satisfies this condition. We concentrate on the impact of information rent

on income inequation in this section, and separate two different channels,

through which information frictions cause income inequality, in Section 3.

2.2 Lorenz ordering

We can use Lorenz ordering to compare income distributions under different

contracts. Let FX(·) be the distribution function of a nonnegative random

variable X with a finite positive mean. Following Gastwirth (1971), we

define the Lorenz curve as follows:

Definition 1 The Lorenz curve of X, LX(p), is defined as

LX(p) =
1

E(X)

∫ p

0

F−1
X (r)dr,∀p ∈ [0, 1],
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where F−1
X (r) = inf{x ≥ 0 : FX(x) ≥ r}.

From the definition of the Lorenz curve, we know that for any constant

c > 0, X and cX share the same Lorenz curve. Thus, multiplying a random

variable by a positive constant does not influence its Lorenz curve. We then

define Lorenz ordering as follows:

Definition 2 For two nonnegative random variables X and Y , X Lorenz

dominates Y if and only if

LX(p) ≥ LY (p),

for all p in [0, 1], denoted as X �L Y.

X �L Y implies that Y is less equal than X. Then the Gini coefficient of

X is smaller than that of Y . To establish the Lorenz ordering between two

nonnegative random variables, we can find the connection between Lorenz

ordering and second-order stochastic dominance. Following Ok (2023), we

define second-order stochastic dominance as follows:

Definition 3 Let FX(·) and FY (·) be the distribution functions of random

variables X and Y , respectively. X second-order stochastically dominates

Y , denoted as X �SSD Y , if and only if∫ z

−∞
FX(τ)dτ ≤

∫ z

−∞
FY (τ)dτ,

where all z ∈ R, provided the integrals exist.

Following Shaked and Shanthikumar (2010), we define the convex order

of two random variables as follows:

Definition 4 For two random variables X and Y , X is smaller than Y in

the convex order, denoted as X �cx Y , if and only if

E[φ(X)] ≤ E[φ(Y )],

where all convex functions φ : R→ R, provided the expectations exist.
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From Theorem 3.A.1 in Shaked and Shanthikumar (2010), we have the

following:

Proposition 4 Let X and Y be two random variables such that E(X) =

E(Y ). Then, X �cx Y if and only if X �SSD Y ; that is,

X �cx Y ⇐⇒ X �SSD Y.

Theorem 3.A.10 in Shaked and Shanthikumar (2010) states the follow-

ing:

Proposition 5 Let X and Y be two nonnegative random variables such

that E (X) = E (Y ). Then, X �cx Y if and only if X �L Y ; that is,

X �cx Y ⇐⇒ X �L Y.

Propositions 4 and 5 imply that X �L Y , X �cx Y , and X �SSD
Y are equivalent if X and Y are two nonnegative random variables with

equal means. For two nonnegative random variables X and Y such that

E(X) > 0, E(Y ) > 0, and E(X) 6= E(Y ), we cannot use Propositions 4

and 5 directly. However, X and X
E(X)

have the same Lorenz curve. Thus,

X �L Y is equivalent to X
E(X)

�L Y
E(Y )

. To compare the Lorenz curves

of random variables X and Y , we can investigate X
E(X)

and Y
E(Y )

since

E
(

X
E(X)

)
= E

(
Y

E(Y )

)
= 1.

For the two-type distribution, we compare income distribution without

information rents and that with information rents. Let

X =

{
θq, with probability v

θ̄q̄, with probabiity 1− v

and

Y =

{
θq + U, with probability v

θ̄q̄, with probabiity 1− v
.

Theorem 1 Under Assumption 1, we have X �L Y .

Proof: see Appendix.

The θ−type agents receive information rents under incomplete infor-

mation. Information rents are transfers beyond the compensation for the
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production cost. The θ̄−type agents do not receive information rents. We

find that information rents increase income inequality for incentive-feasible

contracts. Figure 1 shows that distribution X is more dispersed than Y .

Figure 1: The role of information rent with a discrete distribution.

For two contracts {(t(θ), q(θ)); (t(θ̄), q(θ̄))} and {(t̃(θ), q̃(θ)); (t̃(θ̄), q̃(θ̄))},
we have the following:

Proposition 6 For the two-type case, q̃(θ)/q̃(θ̄) ≥ q(θ)/q(θ̄) implies that

t̃(θ)/t̃(θ̄) ≥ t(θ)/t(θ̄).

Proof: We have

t(θ)/t(θ̄) = [θq(θ) + ∆θq(θ̄)]/(θ̄q(θ̄))

= (θq(θ))/(θ̄q(θ̄)) + ∆θ/θ̄

≤ (θq̃(θ))/(θ̄q̃(θ̄)) + ∆θ/θ̄

= t̃(θ)/t̃(θ̄).

�
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The role of information rents depend on the output level owing to incen-

tive compatibility constraints. Thus, the output level plays an important

role in understanding income equality. The output scheme determines the

payment schedule for any feasible contracts. Information rents can be ex-

pressed as a function of the output. Therefore, the payment is a function

of the output level. We can characterize the payment schedule by inves-

tigating the properties of the output scheme. In this sense, the output

scheme contains sufficient information to study the inequality implications

of any feasible contract. Proposition 6 shows that the contract that induces

output levels with higher differences offers incomes with higher differences.

For the continuous type, let

X(θ) = θq(θ),

and

Y (θ) = θq(θ) + U(θ),

for θ in [a, b]. X(Θ) represents the cost-compensation distribution, and

Y (Θ) represents income distribution with information rents.

Theorem 2 Under Assumption 1′, if θ2
θ1
≥

∫ b
θ2

q(τ)
q(θ2)

dτ∫ b
θ1

q(τ)
q(θ1)

dτ
and ρ(θ1) ≥ ρ(θ2),

for a ≤ θ1 ≤ θ2 ≤ b, then we have X �L Y .

Proof: Applying Proposition 2 and Proposition 10 in the Appendix,

we obtain the result. �

Theorem 2 shows that information rents increase income inequality for

incentive-feasible contracts under certain conditions. Under the feasible

contract, the agents’ payments are not in line with the marginal cost. This

is different from the neoclassical theory of distribution. With information

frictions, the contract creates a wedge between agents’ payments and their

marginal costs. We find conditions under which we can rank contracts

according to their induced income inequality. We rank the income equality

of these contracts using Lorenz ordering. The Lorenz curves can be ranked

without intersections. Figure 2 shows this result.
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Figure 2: The role of information rent with a continuous distribution.
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3 Information frictions

We compare income distribution under incomplete information and under

complete information to find the effects of asymmetric information on in-

come distribution.

3.1 Two types

The principal’s firm has production function S(·). We have an assumption

of S(·).
Assumption 2 : The production function satisfies

S ′(q) > 0, S ′′(q) < 0, lim
q→0

S ′(q) =∞, and lim
q→0

S ′(q)q = 0.

Assumption 2 implies that the marginal product is infinity at q = 0.

Thus, there is no shutdown for θ̄−type agents, and q is always greater than

0.

The principal has the objective function

max
{(t,q);(t̄,q̄)}

v
[
S
(
q
)
− t
]

+ (1− v) [S (q̄)− t̄] .

With two types, the optimal contract problem is

max
{(U,q);(Ū ,q̄)}

v
[
S
(
q
)
− θq

]
+ (1− v)

[
S (q̄)− θ̄q̄

]
−
[
vU + (1− v)Ū

]
s.t. U ≥ Ū + ∆θq̄, (3)

Ū ≥ U −∆θq, (4)

U ≥ 0, (5)

Ū ≥ 0. (6)

Constraints (3) and (4) are from incentive compatibility constraints (1) and

(2). Constraints (5) and (6) are the participation constraints.

We call the optimal contract under incomplete information the second-

best contract. Under Assumptions 1 and 2, the optimal contract under
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asymmetric information satisfies

S ′(qSB) = θ

and

S ′
(
q̄SB
)

= θ̄ +
v

1− v
∆θ,

and the agents’ incomes under the second-best contract are

tSB = θqSB + ∆θq̄SB

and

t̄SB = θ̄q̄SB.

The optimal contract under asymmetric information is influenced by

the information structure and the production function. The output level

and transfers are determined by the optimal contract. To extract rents

from the agents, principals distort the output level of inefficient agents.

To implement qSB and q̄SB, principals offer transfers tSB and t̄SB. These

transfers determine income distribution in the economy under the second-

best contract.

The contract under complete information only has to satisfy the partic-

ipation constraints and does not have to obey the incentive compatibility

constraints. The optimal contract problem under complete information is

max
{(Ū ,q̄);(U,q)}

v
[
S
(
q
)
− θq

]
+ (1− v)

[
S(q̄)− θ̄q̄

]
−
[
vU + (1− v)Ū

]
s.t. U ≥ 0,

Ū ≥ 0.

We call the optimal contract under complete information the first-best

contract. Thus, we have

S ′
(
qFB

)
= θ

and

S ′
(
q̄FB

)
= θ̄,
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and the agents’ incomes under the first-best contract are

tFB = θqFB

and

t̄FB = θ̄q̄FB.

To compare income distribution under the firs-best contract and under

the second-best contract, we start from an observation.

Lemma 2 Under Assumptions 1 and 2, we have

qFB/q̄FB ≤ qSB/q̄SB.

The second-best contract incurs less equal output distribution than the

first-best contract. The θ−type agents under the second-best contract have

the same output level as those under the first-best contract, qSB = qFB.

Owing to the incentive compatibility constraints, the θ̄−type agents under

the second-best contract have a lower output level than those under the

first-best contract, q̄SB ≤ q̄FB. Incomplete information causes a down-

ward output distortion for the θ̄−type agents. This distortion induces an

efficiency loss and a less equal output distribution. Therefore, we have

qFB/q̄FB ≤ qSB/q̄SB.

Proposition 7 Under Assumptions 1 and 2, we have

tFB/t̄FB ≤ tSB/t̄SB.

Proof: We have

tFB/t̄FB = (θqFB)/(θ̄q̄FB)

≤ (θqSB)/(θ̄q̄SB) (output distortion)

≤ (θqSB + USB)/(θ̄q̄SB) (information rent)

= tSB/t̄SB,

where the first inequality is attributable to the output distortion, and the

second inequality comes from information rent. �
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The proof of Proposition 7 employs a decomposition technique, through

which we separate two channels of output distortion and information rent.

Under complete information, agents produce output levels that are deter-

mined by the marginal cost of production, and they receive compensation

for the production cost. They do not receive information rents. Under in-

complete information, the θ−type agents produce output levels according

to the marginal cost of production while the θ̄−type agents suffer from a

downward output distortion. A less equal output distribution is the first

channel through which information frictions cause income inequality. In-

formation rents increase income inequality. This is the second channel

through which information frictions cause income inequality.

Let W SB be income distribution in the economy under the second-best

contract,

W SB =

{
tSB, with probability v

t̄SB, with probabiity 1− v
.

LetW FB be income distribution in the economy with complete information,

W FB =

{
tFB, with probability v

t̄FB, with probabiity 1− v
.

The fact that tFB/t̄FB ≤ tSB/t̄SB implies that asymmetric information

causes a larger relative difference between the income of the θ−type agents

and that of the θ̄−type agents.

Theorem 3 Under Assumptions 1 and 2, we have W FB �L W SB.

Proof: see Appendix.

Income distribution under incomplete information is less equal than that

under complete information. Output distortion owing to asymmetric infor-

mation causes income inequality, and information rent further exaggerates

income inequality.
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3.2 Continuous types

With the continuous type, using the rent variable U(θ) = t(θ)− θq(θ), the

optimization problem of the principal becomes

max
{U(·),q(·))}

∫ b

a

[S (q (θ))− θq (θ)− U (θ)] f (θ) dθ

s.t. U̇ (θ) = −q (θ) a.e. (7)

q̇ (θ) ≤ 0 a.e. (8)

U (θ) ≥ 0, (9)

where (7) is the incentive compatibility constraint, (8) is the implementabil-

ity condition, and (9) is the participation constraint.

We assume the following:

Assumption 2 ′: The production function has the form

S(q) =
1

γ
qγ, γ ∈ (0, 1).

Under Assumptions 1′ and 2′, the optimal contract under asymmetric

information satisfies

S ′
(
qSB(θ)

)
= θ +

F (θ)

f(θ)
.

Information rent is

USB (θ) =

∫ b

θ

qSB (τ) dτ.

The agent’s income under the second-best contract is

tSB (θ) = θqSB (θ) + USB (θ) .

Under complete information, the principal’s problem is

max
{(U(·),q(·))}

∫ b

a

[S(q(θ))− θq(θ)− U(θ)]f(θ)dθ

s.t. U (θ) ≥ 0.

The first-best output is determined by

S ′
(
qFB(θ)

)
= θ.
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The agent’s income under the first-best contract is

tFB (θ) = θqFB (θ) .

Following Veres-Ferrer and Pav́ıa (2022), we define the elasticity of a

random variable as follows:

Definition 5 The elasticity of a random variable Θ is defined as

e(θ) =
θf(θ)

F (θ)
,

for θ in [a, b], where f(θ) is the probability density function of Θ, and F (θ)

is its cumulative distribution function.

Since F (θ) = e−
∫ b
θ
e(τ)
τ
dτ , for θ in [a, b], we know that the elasticity of

a random variable determines its cumulative distribution function. We

assume the following:

Assumption 3: e(θ) is decreasing in θ.

Assumption 3 implies the monotone hazard rate property, f(θ1)
F (θ1)

≥ f(θ2)
F (θ2)

,

for a ≤ θ1 ≤ θ2 ≤ b.

We have

qSB(θ) =

(
θ +

F (θ)

f(θ)

) 1
γ−1

.

for θ in [a, b], and

qFB(θ) = θ
1

γ−1 .

Lemma 3 Under Assumptions 1′, 2′, and 3, we have

qSB(θ1)

qFB(θ1)
≥ qSB(θ2)

qFB(θ2)
,

for a ≤ θ1 ≤ θ2 ≤ b.

Proof: We know from Assumption 3 that e(θ1) ≥ e(θ2), for a ≤ θ1 ≤
θ2 ≤ b. Since

qSB(θ)

qFB(θ)
=

(
θ + F (θ)

f(θ)

) 1
γ−1

θ
1

γ−1

=

(
1 +

1

e(θ)

) 1
γ−1

,
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for θ in [a, b], and 1
γ−1

< 0, we have qSB(θ1)
qFB(θ1)

≥ qSB(θ2)
qFB(θ2)

, for a ≤ θ1 ≤ θ2 ≤ b.

�

Lemma 3 implies that

qSB(θ1)/qSB(θ2) ≥ qFB(θ1)/qFB(θ2),

for a ≤ θ1 ≤ θ2 ≤ b. The output difference under the second-best contract

is larger than that under the first-best contract.

Ratio qSB(θ)
qFB(θ)

also plays an important role for investigating ratio tSB(θ)
tFB(θ)

.

Since tFB(θ) = θqFB(θ) and ρSB(θ) = θqSB(θ), for θ in [a, b], we have
ρSB(θ)
tFB(θ)

= qSB(θ)
qFB(θ)

. Furthermore, we have

tSB(θ)

tFB(θ)
=
ρSB(θ)

tFB(θ)

tSB(θ)

ρSB(θ)
=
qSB(θ)

qFB(θ)

tSB(θ)

ρSB(θ)
,

for θ in [a, b]. Through this relationship we can employ a decomposition

technique, which separates two channels of output distortion and infor-

mation rent. Both channels contribute to the income inequality under

incomplete information.

Proposition 8 Under Assumptions 1′, 2′, and 3, if(
1 +

1

e(θ)

)
θγ(b− θ)1−γ

is decreasing in θ, we have

tSB(θ1)

tFB(θ1)
≥ tSB(θ2)

tFB(θ2)
,

for a ≤ θ1 ≤ θ2 ≤ b.

Proof: If
(

1 + 1
e(θ)

)
θγ(b− θ)1−γ is decreasing in θ, we have

(
1 +

1

e(θ1)

)
θγ1 (b− θ1)1−γ ≥

(
1 +

1

e(θ2)

)
θγ2 (b− θ2)1−γ,
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for a ≤ θ1 ≤ θ2 ≤ b. Thus, we have

θ1

(
1 + 1

e(θ1)

)
θ2

(
1 + 1

e(θ2)

) ≥ (θ2 (b− θ1)

θ1 (b− θ2)

)γ−1

.

Therefore, we have

θ
1

γ−1

1

(
1 + 1

e(θ1)

) 1
γ−1

θ
1

γ−1

2

(
1 + 1

e(θ2)

) 1
γ−1

≤ θ2 (b− θ1)

θ1 (b− θ2)
.

Since qSB (θ) = θ
1

γ−1

(
1 + F (θ)

θf(θ)

) 1
γ−1

= θ
1

γ−1

(
1 + 1

e(θ)

) 1
γ−1

, we have

qSB (θ1)

qSB (θ2)
≤ θ2 (b− θ1)

θ1 (b− θ2)
,

and
θ1q

SB (θ1)

b− θ1

≤ θ2q
SB (θ2)

b− θ2

.

From Proposition 3 we know that

tSB(θ1)

ρSB(θ1)
≥ tSB(θ2)

ρSB(θ2)
.

for a ≤ θ1 ≤ θ2 ≤ b.

We know from Lemma 3 that qSB(θ1)
qFB(θ1)

≥ qSB(θ2)
qFB(θ2)

, for a ≤ θ1 ≤ θ2 ≤ b.

Thus, we know that
tSB(θ1)

tFB(θ1)
≥ tSB(θ2)

tFB(θ2)
,

for a ≤ θ1 ≤ θ2 ≤ b, since tSB(θ)
tFB(θ)

= ρSB(θ)
tFB(θ)

tSB(θ)
ρSB(θ)

= qSB(θ)
qFB(θ)

tSB(θ)
ρSB(θ)

, for θ in [a, b].

�

The result of Proposition 8 is equivalent to

tSB(θ1)/tSB(θ2) ≥ tFB(θ1)/tFB(θ2),

for a ≤ θ1 ≤ θ2 ≤ b. The income difference under the second-best contract

is larger than that under the first-best contract.
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Let tSB (Θ) be income distribution under the second-best contract and

tFB(Θ) be income distribution under the first-best contract.

Theorem 4 Under Assumptions 1′, 2′, and 3, if
(

1 + 1
e(θ)

)
θγ(b− θ)1−γ is

decreasing in θ, then we have tFB(Θ) �L tSB(Θ).

Proof: Applying Proposition 8 and Proposition 10 in the Appendix,

we obtain the result. �

Theorem 4 implies that income distribution under the second-best con-

tract is less equal than that under the first-best contract.

Table 1: Examples of distributions

Distribution, F (θ) Elasticity, e(θ) Output, qSB(θ) Condition used

Formula of Equation (10) See Appendix (1+ 1
e(θ))θγ(b−θ)1−γ↓

θκ,θ∈[0,1] κ ( 1+κ
κ )

1
γ−1 θ

1
γ−1 U(θ)

θq(θ)
↓

θ−a
b−a ,θ∈[a,b], b

a
≤ 3−γ

2
θ
θ−a (2θ−a)

1
γ−1 θq(θ)

b−θ ↑

log(θ)−log(a)
log(b)−log(a)

,θ∈[a,b], b
a
≤
√

2−γ 1
log(θ)−log(a)

θ
1

γ−1 (log(θ)−log(a)+1)
1

γ−1 θq(θ)
b−θ ↑

√
log(θ)
log(b)

,θ∈[1,b],b≤
√

3−γ
2

1
2 log(θ)

θ
1

γ−1 (2 log(θ)+1)
1

γ−1 θq(θ)
b−θ ↑

θ log(θ)
b log(b)

,θ∈[1,b],b≤
√

2−γ log(θ)+1
log(θ)

θ
1

γ−1 ( 2 log(θ)+1
log(θ)+1 )

1
γ−1 θq(θ)

b−θ ↑

All examples in Table 1 satisfy Assumption 3. For these examples, the

income distributions under the second-best contract are less equal than

those under the first-best contract. However, with respect to different

distributions, we use different conditions to draw result tSB(θ1)
ρSB(θ1)

≥ tSB(θ2)
ρSB(θ2)

,

for a ≤ θ1 ≤ θ2 ≤ b. Verification of these examples is in Section 7.3 of

Appendix. Using the procedure in Section 4 we could find more examples

by investigating the transformation of the distributions in Table 1.

The uniform distribution on [0, 1] is a special case of the distribution

with a constant elaticity κ = 1. We investigate the income distribution un-

der the second-best contract if the type distribution has a constant elasticity

κ. The income distribution under the optimal contract has an asymptotical
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Pareto tail with exponent χ = κ
(

1
γ
− 1
)

,

lim
x→∞

Pr
(
tSB (Θ) > x

)
x−χ

= γ−(1−γ)κ
γ

(
1 +

1

κ

)−κ
γ

.

The Pareto exponent χ represents the fatness of the tail. The income

distribution with a lower the Pareto exponent is more dispersed. The lower

κ, the fatter the tail of the income distribution. The higher γ, the fatter

the tail of the income distribution.

We investigate income distribution when the agents’ payments are not

in line with the marginal cost. In the neoclassical theory of distribution,

factors receive payments according to their marginal product. Some stud-

ies use neoclassical theory to explain the observed income distribution.

Sattinger (1975) investigates how comparative advantage connects abil-

ity distribution and income distribution in the Roy model. Heckman and

Honoré (1990) extend the classical Roy model. Gabaix and Landier (2008)

and Terviö (2008, 2009) use the sorting mechanism in assignment mod-

els to investigate income distribution. However, they find that the sorting

mechanism itself is not enough to generate the fat tail of income distribu-

tion. Geerolf (2017) uses an assignment model with complementarities to

generate a Pareto tail of income distribution.

We then consider the type distribuion

F (θ) =

{
h (θ − a) + 2(1−h(b−a))

(b−a)2
(θ − a)2 , θ ∈

[
a, a+b

2

]
;

1− h (b− θ)− 2(1−h(b−a))

(b−a)2
(b− θ)2 , θ ∈

[
a+b

2
, b
]
.

(10)

Figure 3 plots the density function of this example. The density function

of type distribution is non-differentiable at some θ. Thus, output function

q(θ) is non-differentiable at that point. We find this example to show

that our results hold for the case in which output function q(θ) is non-

differentiable at some θ.

With a = 1, b = 1.2, and h = 4, if γ ≤ 0.368, then
(

1 + 1
e(θ)

)
θγ (b− θ)1−γ

is decreasing in θ. We have

tSB (θ1)

tFB (θ1)
≥ tSB (θ2)

tFB (θ2)
,
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Figure 3: A non-differentiable density function.

for a ≤ θ1 ≤ θ2 ≤ b.

4 Transformation of the type distribution

We have verified examples in Table 1. In this section, we find more examples

by the transformation of the type distribution. If the type distribution

changes, the optimal contract changes accordingly. However, we show that

the condition in Proposition 8 still holds under certain transformation.

Let θ̃ = F−1
(
F (θ)

1
β

)
, for β > 0 be the transformation of the type. We

have G(θ) = F (θ)β, for θ in [a, b]. We know that G(θ) satisfies Assumption

3 if F (θ) satisfies it, since eG(θ) = βeF (θ), for θ in [a, b].

If F (θ) satisfies the condition in Proposition 8, we have(
1 +

1

eF (θ1)

)
θγ1 (b− θ1)1−γ ≥

(
1 +

1

eF (θ2)

)
θγ2 (b− θ2)1−γ, (11)
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for a ≤ θ1 ≤ θ2 ≤ b, which implies that

θγ1 (b− θ1)1−γ − θγ2 (b− θ2)1−γ

≥ 1
eF (θ2)

θγ2 (b− θ2)1−γ − 1
eF (θ1)

θγ1 (b− θ1)1−γ . (12)

We know that
(

1 + 1
eF (θ1)

)
≤
(

1 + 1
eF (θ2)

)
, since we have eF (θ1) ≥ eF (θ2

from Assumption 3. Thus, we have

θγ1 (b− θ1)1−γ ≥ θγ2 (b− θ2)1−γ,

from relationship (11). Thus, we have

β
[
θγ1 (b− θ1)1−γ − θγ2 (b− θ2)1−γ] ≥ θγ1 (b− θ1)1−γ − θγ2 (b− θ2)1−γ, (13)

for β ≥ 1.

Combing relationships (12) and (13), we have(
1 +

1

βeF (θ1)

)
θγ1 (b− θ1)1−γ ≥

(
1 +

1

βeF (θ2)

)
θγ2 (b− θ2)1−γ,

which implies that(
1 +

1

eG(θ1)

)
θγ1 (b− θ1)1−γ ≥

(
1 +

1

eG(θ2)

)
θγ2 (b− θ2)1−γ, (14)

since eG(θ) = βeF (θ), for θ in [a, b].

For β ≥ 1, if G(θ) = F (θ)β and F (θ) satisfies the condition in Proposi-

tion 8, then G(θ) also satisfies the condition in Proposition 8. Thus, each

examples in Table 1 represents a class of distributions for which the income

distributions under the second-best contract are less equal than those under

the first-best contract.

According to the definition in Laffont and Tirole (1993), distribution

F (θ) on [a, b] is more favorable than distribution G(θ) on the same interval

if G(θ) ≤ F (θ) for all θ and f(θ)
F (θ)
≤ g(θ)

G(θ)
for θ in [a, b]. Under our trans-

formation, we know that F (θ) is more favorable than G(θ) = F (θ)β for

β ≥ 1.
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5 Social norms

Piketty and Saez (2003) propose that changing social norms regarding in-

equality have played an important role in rising inequality in the United

States since the 1970s. Thus, we introduce a parameter of norms regard-

ing social welfare into our benchmark model and investigate the effect of

social-norm change on income distribution.

The principal maximizes the weighted average of its surplus and of the

agent’s rent U with α ∈ [0, 1] as the weight for the agent’s rent. Here, α

represents the social norm:

max
{(U,q);(Ū ,q̄)}

v
[
S
(
q
)
− θq

]
+ (1− v)

[
S (q̄)− θ̄q̄

]
− (1− α)

[
vU + (1− v)Ū

]
s.t. U ≥ Ū + ∆θq̄,

Ū ≥ U −∆θq,

U ≥ 0,

Ū ≥ 0.

The outputs are

S ′
(
qα
)

= θ,

and

S ′ (q̄α) = θ̄ +
v

1− v
(1− α)∆θ.

The agents’ incomes under the second-best contract are now

tα = θqα + ∆θq̄α,

and

t̄α = θ̄q̄α.

For the two-type case, if α1 ≥ α2, we have q̄α2 ≤ q̄α1 . Thus, we know

that qα2/q̄α2 ≥ qα1/q̄α1 . From Proposition 6, we have tα2/t̄α2 ≥ tα1/t̄α1 .

The income difference under α2 is larger than that under α1. If the princi-

pal places lower weight on the agent’s rent, the optimal contract causes less

equal income distribution. When the principal increases weight α, both ef-

ficiency and equity increase. Then, we find that the optimal contract in our
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benchmark model, corresponding to α = 0, is neither efficient nor equal.

The optimal contract under a trade-off between rent extraction and effi-

ciency causes less efficient output levels and less equal income distribution.

For the continuous type, the principal’s problem is now

max
{(U(·),q(·)}

∫ b

a

[S (q (θ))− θq (θ)− (1− α)U(θ)] f(θ)dθ,

s.t. U̇ (θ) = −q (θ) a.e.,

q̇(θ) ≤ 0 a.e.,

U (θ) ≥ 0.

The output is

qα(θ) =

(
θ

1− α + e(θ)

e(θ)

) 1
γ−1

,

for θ in [a, b].

Lemma 4 Under Assumptions 1′, 2′, and 3, we have

qα2(θ1)

qα1(θ1)
≥ qα2(θ2)

qα1(θ2)
,

for a ≤ θ1 ≤ θ2 ≤ b, if α1 ≥ α2.

Proof: We have

qα2(θ)

qα1(θ)
=

(
1− α2 + e(θ)

1− α1 + e(θ)

) 1
γ−1

=

(
1 +

α1 − α2

1− α1 + e(θ)

) 1
γ−1

,

for θ in [a, b]. If α1 ≥ α2, we know that qα2 (θ1)
qα1 (θ1)

≥ qα2 (θ2)
qα1 (θ2)

, for a ≤ θ1 ≤ θ2 ≤ b,

since e(θ1) ≥ e(θ2) from Assumption 3. �

For uniform distribution on [a, b], we have

tα2 (θ1)

tα1 (θ1)
≥ tα2 (θ2)

tα1 (θ2)

for a ≤ θ1 ≤ θ2 ≤ b, if α1 ≥ α2. Thus, we have tα2(θ1)/tα2(θ2) ≥
tα1(θ1)/tα1(θ2) for a ≤ θ1 ≤ θ2 ≤ b. The income difference under α2 is

larger than that under α1. The derivation is in Section 7.4 of Appendix.

Applying Proposition 10 in the Appendix, we have tα1(Θ) �L tα2(Θ),
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if α1 ≥ α2. Income distribution under α2 is less equal than that under α1.

The marginal cost of production and the type distribution do not change.

The principal offers a contract that displays a less equal wage profile, if

α1 ≥ α2. As in Costinot and Vogel (2010), changes in the wage profile

reflect changes in the return to skill. If the principal places lower weight on

the agent’s rent, the optimal contract causes less equal income distribution.

The relative income difference between the efficient- and inefficient-type

agents becomes larger.

6 Conclusion

This study investigates how information frictions influence income distri-

butions when there is a trade-off between rent extraction and efficiency.

We examine the adverse selection problem in this study and show that in-

formation rent increases income inequality. We rank the income equality

of these contracts using Lorenz ordering. The Lorenz curves can be ranked

without intersections.

We find that the output scheme determines the payment schedule for

any feasible contracts. In this sense, the output scheme contains sufficient

information to study the inequality implications of any feasible contract.

For the continuous type, the elasticity of the type distribution determines

the payment schedule. We also find that changes in social norms influence

inequality under the optimal contract.
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7 Appendix

7.1 Inequality tools

The coefficient of variation (CV) of a random variable X is defined as

CV (X) =

√
E (X − EX)2

(EX)2 .

From Proposition 5, we know that X
E(X)

�L Y
E(Y )

implies that X
E(X)

�cx Y
E(Y )

.

By the definition of the convex order, we know that

E

(
X

E(X)
− 1

)2

≤ E

(
Y

E(Y )
− 1

)2

,

since φ(x) = (x− 1)2 is a convex function. Therefore, X �L Y implies

CV (X) =

√
E

(
X

E(X)
− 1

)2

≤

√
E

(
Y

E(Y )
− 1

)2

= CV (Y ).

Proposition 9 For two nonnegative random variables X and Y with E(X) =

E(Y ),

X =

{
x, with probability v

x′, with probabiity 1− v
,

where x′ ≤ x. Further,

Y =

{
y, with probability v

y′, with probabiity 1− v
,

where y′ ≤ y. If x′ ≥ y′, then we have X �SSD Y .

Proof: The distribution function of X, FX(τ), is3

FX(τ) = (1− v)I[x′,x)(τ) + I[x,∞)(τ), τ ∈ [0,∞),

3The indicator function IA(τ) is defined as

IA(τ) =

{
1, if τ ∈ A
0, if τ /∈ A .
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and the distribution function of Y , FY (τ), is

FY (τ) = (1− v)I[y′,y)(τ) + I[y,∞)(τ), τ ∈ [0,∞).

Since E(X) = E(Y ), x′ ≥ y′ implies x ≤ y. Thus, for z ∈ [0, y′), we

have
∫ z

0
[FX(τ)− FY (τ)] dτ = 0, and for z ∈ [y′, x′) we have∫ z

0

[FX(τ)− FY (τ)] ds = −
∫ z

y′
(1− v)ds = −(1− v) (z − y′) ≤ 0.

For z ∈ [x′, x), we have∫ z

0

[FX(τ)− FY (τ)] dτ = −
∫ x′

y′
(1− v)ds = −(1− v) (x′ − y′) ≤ 0.

For z ∈ [x, y), we have∫ z

0

[FX(τ)− FY (τ)] dτ = −(1− v) (x′ − y′) +

∫ z

x

vdτ

≤ −(1− v) (x′ − y′) + v (y − x)

= E (Y )− E (X)

= 0.

For z ∈ [y,∞), we have∫ z

0

[FX(τ)− FY (τ)] dτ = −(1− v) (x′ − y′) + v (y − x)

= E (Y )− E (X)

= 0.

Thus, we have∫ z

0

[FX(τ)− FY (τ)] dτ ≤ 0, for ∀z ∈ [0,∞),

which implies
∫ z

0
FX(τ)dτ ≤

∫ z
0
FY (τ)dτ for all z ∈ [0,∞). Therefore, we

have X �SSD Y . �

Proof of Theorem 1: We have E(X) = vθq + (1− v)θ̄q̄ and E(Y ) =
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v
(
θq + U

)
+ (1− v)θ̄q̄. Let

X̂ =

{
θq/E(X), with probability v

θ̄q̄/E(X), with probabiity 1− v

and

Ŷ =

{ (
θq + U

)
/E(Y ), with probability v

θ̄q̄/E(Y ), with probabiity 1− v
.

Since E
(
X̂
)

= E
(
Ŷ
)

= 1 and θ̄q̄/E(X) ≥ θ̄q̄/E(Y ), we know that

X̂ �SSD Ŷ from Proposition 9. Therefore, we have X̂ �L Ŷ from Proposi-

tions 4 and cxL. Thus, we know that X �L Y . �

To compare inequality for the continuous types, we need the following

proposition, which extends the results of Fellman (1976):

Proposition 10 Let X be a nonnegative nondegenerate random variable

on [a, b], and let m(x) and n(x) be nonnegative decreasing functions of

x ∈ [a, b] such that m(x) > 0 and n(x) > 0 for x ∈ [a, b]. Then, we have

n(X) �L m(X),

if m(x)
n(x)

is decreasing in x ∈ [a, b].

Proof: Assume that X = F−1
X (R), where R is a uniform distribution

on (0, 1). Let Y = m(X) and Z = n(X). We have

Y = m(F−1
X (1−R))

and

Z = n(F−1
X (1−R)).

The Lorenz curve of X, LX(p), is defined as

LX(p) =
1

E(X)

∫ p

0

F−1
X (r)dr,∀p ∈ [0, 1],

where F−1
X (r) = inf{x ≥ 0 : FX(x) ≥ r}.
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Thus, we have

LY (p) =
1

E(Y )

∫ p

0

F−1
Y (r)dr =

1

E(Y )

∫ p

0

m(F−1
X (1− r))dr,

where p ∈ [0, 1], and E(Y ) =
∫ p

0
m(F−1

X (1− r))dr. Similarly,

LZ(p) =
1

E(Z)

∫ p

0

F−1
Z (r)dr =

1

E(Z)

∫ p

0

n(F−1
X (1− r))dr,

where p ∈ [0, 1], and E(Z) =
∫ p

0
n(F−1

X (1− r))dr.
Therefore, for p ∈ [0, 1], we have

LY (p)− LZ(p) =

∫ p

0

(
m(F−1

X (1− r))
E(Y )

− n(F−1
X (1− r))
E(Z)

)
dr

=

∫ p

0

1

n(F−1
X (1− r))

(
m(F−1

X (1− r))
n(F−1

X (1− r))E(Y )
− 1

E(Z)

)
dr ≤ 0.

Thus, we have n(X) �L m(X). �

7.2 Proof of Theorem 3

Proof: Income per capita under the second-best contract is

E
(
W SB

)
= vtSB + (1− v)t̄SB.

Let Ŵ SB be the normalized income distribution,

Ŵ SB =
W SB

E (W SB)
=

{
tSB/E

(
W SB

)
, with probability v

t̄SB/E
(
W SB

)
, with probabiity (1− v)

.

Obviously, we have E
(
Ŵ SB

)
= 1. Income per capita under the first-best

contract is E
(
W FB

)
= vtFB + (1 − v)t̄FB. Let Ŷ FB be the normalized

income distribution,

Ŵ FB =
W FB

E (W FB)
=

{
tFB/E

(
W FB

)
, with probability v

t̄FB/E
(
W FB

)
, with probabiity (1− v)

.

Thus, we have E
(
Ŵ FB

)
= 1.
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We have

t̄FB

E (W FB)
=

t̄FB

vtFB + (1− v)t̄FB

=
1

v t
FB

t̄FB
+ 1− v

≥ 1

v t
SB

t̄SB
+ 1− v

=
t̄SB

E (W SB)
,

since we know that tFB/t̄FB ≤ tSB/t̄SB from Proposition 7.

We know that

Ŵ FB �SSD Ŵ SB

from Proposition 9. Thus, by Propositions 4 and 5, we have Ŵ FB �L Ŵ SB.

Thus, we know that W FB �L W SB. �

7.3 Examples in Table 1

For the case of the distribution with a constant elaticity κ > 0, we have

F (θ) = θκ, for θ in [a, b]. Thus, we knnow that USB(θ)
θqSB(θ)

= 1−γ
γ

[
1−

(
θ
b

) γ
1−γ
]

is decreasing in θ.

For the case of the uniform distribution, F (θ) = θ−a
b−a , θ in [a, b]. We

have q (θ) = (2θ − a)
1

γ−1 . We would like to prove that

θ1q(θ1)

b− θ1

≤ θ2q(θ2)

b− θ2

,

for a ≤ θ1 ≤ θ2 ≤ b. That is

q(θ2)

q(θ1)
≥ θ1 (b− θ2)

θ2 (b− θ1)
,

which is eqivalent to

2θ2 − a
2θ1 − a

≤
(
θ1(b− θ2)

θ2(b− θ1)

)γ−1

.

Let x = θ1(b−θ2)
θ2(b−θ1)

≤ 1. Since x
γ−1 ≥ 1 + (1 − γ)(1 − x) for x in (0, 1], it
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is sufficient to show that

2θ2 − a
2θ1 − a

− 1 ≤ (1− γ)

(
1− θ1(b− θ2)

θ2(b− θ1)

)
.

It is sufficient to show that

2(b− θ1)

2θ1 − a
≤ (1− γ)

b

θ2

.

A sufficient condition for this relationship is

b

a
≤ 3− γ

2
.

For the case of distribution F (θ) = log(θ)−log(a)
log(b)−log(a)

, θ in [a, b], we have

q(θ) = [θ (log (θ)− log (a) + 1)]
1

γ−1 . We would like to prove that

q(θ2)

q(θ1)
≥ θ1 (b− θ2)

θ2 (b− θ1)
,

for a ≤ θ1 ≤ θ2 ≤ b, which is equivalent to

θ2 (log (θ2)− log (a) + 1)

θ1 (log (θ1)− log (a) + 1)
≤
(
θ1 (b− θ2)

θ2 (b− θ1)

)γ−1

.

Let x = θ1(b−θ2)
θ2(b−θ1)

≤ 1. Since x
γ−1 ≥ 1 + (1 − γ)(1 − x) for x in (0, 1], it

is sufficient to show that

(1− γ)
(θ2 − θ1) b

θ2 (b− θ1)
≥ θ2 (log (θ2)− log (θ1)) + (θ2 − θ1) (log (θ1)− log (a) + 1)

θ1 (log (θ1)− log (a) + 1)
.

Since log(θ) is a concave function, we have log (θ2)− log (θ1) ≤ 1
θ1

(θ2 − θ1).

It is sufficient to prove that

(1− γ) b ≥ θ2
2 (b− θ1)

θ2
1 (log (θ1)− log(a) + 1)

+
θ2 (b− θ1)

θ1

.

A sufficient condition for this relationship is

b

a
≤
√

2− γ.
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For the case of distribution F (θ) =
√

log(θ)
log(b)

, 1 ≤ θ ≤ b, we have

qSB (θ) = [θ (2 log (θ) + 1)]
1

γ−1 . We would like to prove that

q(θ2)

q(θ1)
≥ θ1 (b− θ2)

θ2 (b− θ1)
,

for 1 ≤ θ1 ≤ θ2 ≤ b, which is equivalent to

θ2 (2 log (θ2) + 1)

θ1 (2 log (θ1) + 1)
≤
(
θ1 (b− θ2)

θ2 (b− θ1)

)γ−1

.

Let x = θ1(b−θ2)
θ2(b−θ1)

≤ 1. Since x
γ−1 ≥ 1 + (1 − γ)(1 − x) for x in (0, 1], it

is sufficient to show that

(1− γ)
(θ2 − θ1) b

θ2 (b− θ1)
≥ 2θ2 (log (θ2)− log (θ1)) + (θ2 − θ1) (2 log (θ1) + 1)

θ1 (2 log (θ1) + 1)
.

Since log(θ) is a concave function, we have log (θ2)− log (θ1) ≤ 1
θ1

(θ2 − θ1).

It is sufficient to prove that

(1− γ) b ≥ 2θ2
2 (b− θ1)

θ2
1 (2 log (θ1) + 1)

+
θ2 (b− θ1)

θ1

.

A sufficient condition for this relationship is

b ≤
√

3− γ
2

.

For the case of distribution F (θ) = θ log(θ)
b log(b)

, 1 ≤ θ ≤ b, we have qSB (θ) =[
θ
(

2 log(θ)+1
log(θ)+1

)] 1
γ−1

. We would like to prove that

q(θ2)

q(θ1)
≥ θ1 (b− θ2)

θ2 (b− θ1)
,

for 1 ≤ θ1 ≤ θ2 ≤ b, which is equivalent to

θ2

(
2 log(θ2)+1
log(θ2)+1

)
θ1

(
2 log(θ1)+1
log(θ1)+1

) ≤ (θ1 (b− θ2)

θ2 (b− θ1)

)γ−1

.
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Let x = θ1(b−θ2)
θ2(b−θ1)

≤ 1. Since x
γ−1 ≥ 1 + (1 − γ)(1 − x) for x in (0, 1], it

is sufficient to show that

(1− γ)
(θ2 − θ1) b

θ2 (b− θ1)
≥
θ2

(
log(θ2)

log(θ2)+1
− log(θ1)

log(θ1)+1

)
+ (θ2 − θ1)

(
log(θ1)

log(θ1)+1
+ 1
)

θ1

(
log(θ1)

log(θ1)+1
+ 1
) .

1 ≤ θ1 ≤ θ2 implies 1
log(θ2)+1

≤ 1
log(θ1)+1

. Since log(θ) is a concave function,

we have log (θ2)− log (θ1) ≤ 1
θ1

(θ2 − θ1). It is sufficient to prove that

(1− γ) b ≥ θ2
2 (b− θ1)

θ2
1 (2 log (θ1) + 1) (log (θ1) + 1)

+
θ2 (b− θ1)

θ1

.

A sufficient condition for this relationship is

b ≤
√

2− γ.

Consider the following density function:

f (θ) =

{
4(1−h(b−a))

(b−a)2
(θ − a) + h, for θ ∈

[
a, a+b

2

]
;

4(1−h(b−a))

(b−a)2
(b− θ) + h, for θ ∈

[
a+b

2
, b
]
,

with cumulative distribution function

F (θ) =

{
h (θ − a) + 2(1−h(b−a))

(b−a)2
(θ − a)2 , for θ ∈

[
a, a+b

2

]
;

1− h (b− θ)− 2(1−h(b−a))

(b−a)2
(b− θ)2 , for θ ∈

[
a+b

2
, b
]
.

Therefore,

e (θ) =
θf (θ)

F (θ)
=

 e1 (θ) =
θ[4(1−h(b−a))(θ−a)+h(b−a)2]

h(b−a)2(θ−a)+2(1−h(b−a))(θ−a)2
, for θ ∈

[
a, a+b

2

]
;

e2 (θ) =
θ[4(1−h(b−a))(b−θ)+h(b−a)2]

(b−a)2−h(b−a)2(b−θ)−2(1−h(b−a))(b−θ)2 , for θ ∈
[
a+b

2
, b
]
.

We first check that e (θ) is decreasing in θ. With a = 1, b = 1.2, and

h = 4, e (θ) can be rewritten as

e (θ) =

{
e1 (θ) = 1 + θ2−0.6

θ2−1.6θ+0.6
, for θ ∈ [1, 1.1] ;

e2 (θ) = 1 + 0.728−0.4θ2

1.12θ−0.4θ2−0.728
, for θ ∈ [1.1, 1.2] .
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Since θ2 − 1.6θ + 0.6 > 0, for all (θ1, θ2) ∈ [1, 1.1]× [1, 1.1] and θ1 ≤ θ2,

θ2
2 − 0.6

θ2
2 − 1.6θ2 + 0.6

− θ2
1 − 0.6

θ2
1 − 1.6θ1 + 0.6

=
(θ2 − θ1) (1.2 (θ2 + θ1)− 1.6θ1θ2 − 0.96)

(θ2
2 − 1.6θ2 + 0.6) (θ2

1 − 1.6θ1 + 0.6)
,

where 1.2 (θ2 + θ1)−1.6θ1θ2−0.96 < 0, because when θ2 = θ1, 1.2 (θ2 + θ1)−
1.6θ1θ2 − 0.96 = −1.6θ2

1 + 2.4θ1 − 0.96 < 0 and since 1.2 − 1.6θ1 < 0,

1.2 (θ2 + θ1)−1.6θ1θ2−0.96 = θ2 (1.2− 1.6θ1)+1.2θ1−0.96 is decreasing in

θ2. Therefore, e1 (θ) is decreasing. Then, 1.12θ−0.4θ2−0.728 > 0 increases

in θ and 0.728 − 0.4θ2 > 0 imples that e2 (θ) is decreasing. Moreover,

e1 (1.1) = e2 (1.1). Hence, e (θ) is decreasing.

Then, we would like to prove that(
1 +

1

e(θ)

)
θγ(b− θ)1−γ

is decreasing; that is, for all (θ1, θ2) ∈ [a, b]× [a, b] and θ1 ≤ θ2,

θ2

(
1 + 1

e(θ2)

)
θ1

(
1 + 1

e(θ1)

) ≤ (θ1 (b− θ2)

θ2 (b− θ1)

)γ−1

.

Denote X ≡ θ1(b−θ2)
θ2(b−θ1)

≤ 1. Since

X
γ−1 ≥ 1 + (1− γ) (1−X) , (15)

we need to prove that

(1− γ)
(θ2 − θ1) b

θ2 (b− θ1)
≥
θ2

(
1 + 1

e(θ2)

)
θ1

(
1 + 1

e(θ1)

) − 1 (16)

which is

(1− γ)
(θ2 − θ1) b

θ2 (b− θ1)
≥
θ2

(
1

e(θ2)
− 1

e(θ1)

)
+ (θ2 − θ1)

(
1 + 1

e(θ1)

)
θ1

(
1 + 1

e(θ1)

) . (17)

We will prove it in the following three cases with a = 1, b = 1.2, and
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h = 4:

i. for all (θ1, θ2) ∈ [a, a+b
2

]× [a, a+b
2

] and θ1 ≤ θ2;

ii. for all (θ1, θ2) ∈ [a+b
2
, b]× [a+b

2
, b] and θ1 ≤ θ2;

iii. for all θ1 ∈ [a, a+b
2

], θ2 ∈ [a+b
2
, b] and θ1 ≤ θ2.

For case i, taking θ1 ≤ θ2 in [1, 1.1],(
θ2 − 1

e1(θ2)

)
−
(
θ1 − 1

e1(θ1)

)
=

(θ32−1.3θ22+0.8θ2−0.3)(θ21−0.8θ1)−(θ31−1.3θ21+0.8θ1−0.3)(θ22−0.8θ2)
(θ22−0.8θ2)(θ21−0.8θ1)

,

=
(θ2−θ1)[(θ21−0.8θ1)θ22+(0.3+0.24θ1−0.8θ21)θ2+0.3θ1−0.24]

(θ22−0.8θ2)(θ21−0.8θ1)
.

The axis of symmetry of the polynomial (θ2
1 − 0.8θ1) θ2

2 + (0.3 + 0.24θ1 −
0.8θ2

1)θ2+0.3θ1−0.24 is 0.4+ 0.1875
θ1

+ 0.025
2θ1−1.6

which decreases in θ1. Therefore,

the maximum of the axis of symmetry is 0.65 < 1. Since θ2
1 − 0.8θ1 > 0,

(θ2
1 − 0.8θ1) θ2

2 + (0.3 + 0.24θ1 − 0.8θ2
1)θ2 + 0.3θ1 − 0.24 increases in θ2 on

[1, 1.1] and the minimum at θ2 = 1 is 0.2θ2
1 − 0.26θ1 + 0.06 which has

two roots being 0.3 and 1. Hence, we have 0.2θ2
1 − 0.26θ1 + 0.06 ≥ 0

on the interval [1, 1.1] and thus the minimum of (θ2
1 − 0.8θ1) θ2

2 + (0.3 +

0.24θ1− 0.8θ2
1)θ2 + 0.3θ1− 0.24 is greater or equal to zero. Hence, we have

θ2− 1
e1(θ2)

≥ θ1− 1
e1(θ1)

, thus 1
e1(θ2)

− 1
e1(θ1)

≤ θ2− θ1. Therefore, a sufficient

condition for inequality (17) is

(1− γ)
(θ2 − θ1) b

θ2 (b− θ1)
≥
θ2 (θ2 − θ1) + (θ2 − θ1)

(
1 + 1

e1(θ1)

)
θ1

(
1 + 1

e1(θ1)

) ,

which is

(1− γ) b ≥ θ2
2

θ1
(b−θ1)

(
1 + 1

e(θ1)

) +
θ2

θ1
(b−θ1)

.

Then, since e1 (θ1) is decreasing and θ1
(b−θ1)

is increasing, θ1
(b−θ1)

(
1 + 1

e1(θ1)

)
is increasing, and a sufficient condition on γ is taking θ2 = 1.1 and θ1 = 1.

Therefore, we obtain γ ≤ 0.615.

44



For case ii, taking θ1 ≤ θ2 in [1.1, 1.2],(
2θ2 − 1

e2(θ2)

)
−
(

2θ1 − 1
e2(θ1)

)
=

(−4θ32+6.6θ22−2.8θ2+1.82)(2.8θ1−2θ21)−(−4θ31+6.6θ21−2.8θ1+1.82)(2.8θ2−2θ22)
(2.8θ2−2θ22)(2.8θ1−2θ21)

,

=
(θ2−θ1)[(8θ21−11.2θ1)θ22+(3.64+12.88θ1−11.2θ21)θ2+3.64θ1−5.096]

(2.8θ2−2θ22)(2.8θ1−2θ21)
,

The axis of symmetry of the polynomial (8θ2
1 − 11.2θ1) θ2

2 +(3.64+12.88θ1−
11.2θ2

1)θ2 + 3.64θ1 − 5.096 is 0.7 + 0.05
θ1
− 0.1625

5.6−4θ1
which decreases in θ1.

Therefore, the maximum of the axis of symmetry is less than 0.6101 < 1.

Since 8θ2
1 − 11.2θ1 < 0, (8θ2

1 − 11.2θ1) θ2
2 + (3.64 + 12.88θ1 − 11.2θ2

1)θ2 +

3.64θ1 − 5.096 decreases in θ2 on [1.1, 1.2] and the minimum at θ2 = 1.2 is

−1.92θ2
1 +2.968θ1−0.728 which has the axis of symmetry less than 1.1 and

its minimum at θ1 = 1.2 is 0.0688 > 0. Hence, we have −1.92θ2
1 +2.968θ1−

0.728 > 0 on the interval [1.1, 1.2] and the minimum of (8θ2
1 − 11.2θ1) θ2

2 +

(3.64 + 12.88θ1 − 11.2θ2
1)θ2 + 3.64θ1 − 5.096 is positive. Hence, we have

2θ2 − 1
e2(θ2)

≥ 2θ1 − 1
e2(θ1)

, thus 1
e2(θ2)

− 1
e2(θ1)

≤ 2 (θ2 − θ1) . Therefore, a

sufficient condition for inequality (17) is

(1− γ) b ≥ 2θ2
2

θ1
(b−θ1)

(
1 + 1

e(θ1)

) +
θ2

θ1
(b−θ1)

,

and we obtain a sufficient condition γ ≤ 0.706.

For case iii, θ1 ∈ [1, 1.1] and θ2 ∈ [1.1, 1.2]. 1.8θ2 − 1
e2(θ2)

is increasing

in θ2 because taking θ21 ≤ θ22 ∈ [1.1, 1.2],(
1.8θ22 − 1

e2(θ22)

)
−
(

1.8θ21 − 1
e2(θ21)

)
=

(−3.6θ322+6.04θ222−2.8θ22+1.82)(2.8θ21−2θ221)−(−3.6θ321+6.04θ221−2.8θ21+1.82)(2.8θ22−2θ222)
(2.8θ22−2θ222)(2.8θ21−2θ221)

,

=
(θ22−θ21)[(7.2θ221−10.08θ21)θ222+(3.64+11.312θ21−10.08θ221)θ22+3.64θ21−5.096]

(2.8θ22−2θ222)(2.8θ21−2θ221)
.

The axis of symmetry of the polynomial (7.2θ2
21 − 10.08θ21) θ2

22+(3.64 + 11.312θ21 − 10.08θ2
21) θ22+

3.64θ21−5.096 is 0.7+ (1.82/10.08)
θ21

− 0.1
10.08−7.2θ21

which decreases in θ21. There-

fore, the maximum of the axis of symmetry is less than 0.818 < 1.1. Since

7.2θ2
21−10.08θ21 < 0, (7.2θ2

21 − 10.08θ21) θ2
22+(3.64 + 11.312θ21 − 10.08θ2

21) θ22+
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3.64θ21 − 5.096 decreases in θ22 on [1.1, 1.2] and the minimum at θ22 =

1.2 is −1.728θ2
21 + 2.6992θ21 − 0.728 which has the axis of symmetry less

than 1.1 and its minimum at θ21 = 1.2 is 0.0222 > 0. Hence, we have

−1.728θ2
21+2.6992θ21−0.728 > 0 on the interval [1.1, 1.2] and the minimum

of (7.2θ2
21 − 10.08θ21) θ2

22+(3.64 + 11.312θ21 − 10.08θ2
21) θ22+3.64θ21−5.096

is positive. Therefore, 1.8θ2 − 1
e2(θ2)

is increasing in θ2.

Moreover, 1.8θ1 − 1
e1(θ1)

is increasing in θ1 because taking θ11 ≤ θ12 ∈
[1, 1.1],(

1.8θ12 − 1
e1(θ12)

)
−
(

1.8θ11 − 1
e1(θ11)

)
=

(1.8θ312−1.94θ212+0.8θ12−0.3)(θ211−0.8θ11)−(1.8θ311−1.94θ211+0.8θ11−0.3)(θ212−0.8θ12)
(θ212−0.8θ12)(θ211−0.8θ11)

,

=
(θ12−θ11)[(1.8θ211−1.44θ11)θ212+(0.3+0.752θ11−1.44θ211)θ12+0.3θ11−0.24]

(θ212−0.8θ12)(θ211−0.8θ11)
.

The axis of symmetry of the polynomial (1.8θ2
11 − 1.44θ11) θ2

12+(0.3 + 0.752θ11 − 1.44θ2
11) θ12+

0.3θ11 − 0.24 is 0.4 + (0.15/1.44)
θ11

+ 0.0125
1.8θ11−1.44

which decreases in θ1. There-

fore, the maximum of the axis of symmetry is less than 0.5389 < 1. Since

1.8θ2
11−1.44θ11 > 0, (1.8θ2

11 − 1.44θ11) θ2
12 + (0.3 + 0.752θ11 − 1.44θ2

11) θ12 +

0.3θ11 − 0.24 increases in θ12 on [1, 1.1] and the minimum at θ12 = 1 is

0.36θ2
11 − 0.388θ11 + 0.06 which has the axis of symmetry less than 1 and

its minimum at θ11 = 1 is 0.032 > 0. Hence, we have 0.36θ2
11 − 0.388θ11 +

0.06 > 0 on the interval [1, 1.1] and the minimum of (1.8θ2
11 − 1.44θ11) θ2

12 +

(0.3 + 0.752θ11 − 1.44θ2
11) θ12 + 0.3θ11− 0.24 is positive. Therefore, 1.8θ1−

1
e1(θ1)

is increasing in θ1.

Furthermore, min
(

1.8θ2 − 1
e2(θ2)

)
= 1.8·1.1− 1

e2(1.1)
= max

(
1.8θ1 − 1

e1(θ1)

)
=

1.8 ·1.1− 1
e1(1.1)

= 1.98− 0.02
0.264

. Hence, we have 1.8θ2− 1
e2(θ2)

≥ 1.8θ1− 1
e1(θ1)

,

thus 1
e2(θ2)

− 1
e1(θ1)

≤ 1.8 (θ2 − θ1) . Therefore, a sufficient condition for in-

equality (17) is

(1− γ) b ≥ 1.8θ2
2

θ1
(b−θ1)

(
1 + 1

e1(θ1)

) +
θ2

θ1
(b−θ1)

,

and we obtain a sufficient condition γ ≤ 0.368.

In all, a sufficient conditon for
(

1 + 1
e(θ)

)
θγ(b− θ)1−γ to be decreasing

is γ ≤ 0.368.
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7.4 Derivation of social norms

For uniform distribution on [a, b], we have e(θ) = θ
θ−a , and the second-best

qα (θ) = (2− α)
1

γ−1

(
θ − 1− α

2− α
a

) 1
γ−1

,

tα (θ) = (2− α)
1

γ−1
γ − 1

γ

[(
b− 1− α

2− α
a

) γ
γ−1

−
(
θ − 1− α

2− α
a

) γ
γ−1

]

+ (2− α)
1

γ−1

(
θ − 1− α

2− α
a

) 1
γ−1

θ.

and

tα2 (θ)

tα1 (θ)
=

(2− α2)
1

γ−1 γ−1
γ

[(
b− 1−α2

2−α2
a
) γ
γ−1 −

(
θ − 1−α2

2−α2
a
) γ
γ−1

]
+ (2− α2)

1
γ−1

(
θ − 1−α2

2−α2
a
) 1
γ−1

θ

(2− α1)
1

γ−1 γ−1
γ

[(
b− 1−α1

2−α1
a
) γ
γ−1 −

(
θ − 1−α1

2−α1
a
) γ
γ−1

]
+ (2− α1)

1
γ−1

(
θ − 1−α1

2−α1
a
) 1
γ−1

θ

.

Then, we have

∂

∂θ

(
tα2 (θ)

tα1 (θ)

)
=

1(
(2− α1)

1
γ−1 γ−1

γ

[(
b− 1−α1

2−α1
a
) γ
γ−1 −

(
θ − 1−α1

2−α1
a
) γ
γ−1

]
+ (2− α1)

1
γ−1

(
θ − 1−α1

2−α1
a
) 1
γ−1

θ

)2

·1
γ

(2− α2)
1

γ−1 (2− α1)
1

γ−1

(
θ − 1− α2

2− α2

a

) 1
γ−1
−1(

θ − 1− α1

2− α1

a

) 1
γ−1
−1

θ

·


(
θ − 1− α1

2− α1

a

)( b− 1−α1

2−α1
a

θ − 1−α1

2−α1
a

) γ
γ−1

− 1

− (θ − 1− α2

2− α2

a

)( b− 1−α2

2−α2
a

θ − 1−α2

2−α2
a

) γ
γ−1

− 1

 .
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Denote g = g (α) ≡ 1−α
2−α , g

′ (α) < 0. In addition,

∂

∂g

[
(θ − ga)

[(
b− ga
θ − ga

) γ
γ−1

− 1

]]

=
∂

∂g

[
(b− ga)

γ
γ−1

(θ − ga)
1

γ−1

− θ + ga

]
=

1

(θ − ga)
2

γ−1

1

γ − 1
a (b− ga)

γ
γ−1
−1 (θ − ga)

1
γ−1
−1 [b− ga− γ (θ − ga)] + a.

With a > 0, γ−1 < 0, 1

(θ−ga)
2

γ−1

1
γ−1

a (b− ga)
γ
γ−1
−1 (θ − ga)

1
γ−1
−1 [b− ga− γ (θ − ga)]+

a ≥ 0 if and only if

(b− ga)− γ (θ − ga)

(θ − ga)
γ
γ−1

≤ (b− ga)− γ (b− ga)

(b− ga)
γ
γ−1

which is true because

∂

∂θ

(b− ga)− γ (θ − ga)

(θ − ga)
γ
γ−1

=
1

(θ − ga)
2γ
γ−1

γ

1− γ
(θ − ga)

γ
γ−1
−1 [(b− ga)− γ (θ − ga)− (1− γ) (θ − ga)] ,

=
1

(θ − ga)
2γ
γ−1

γ

1− γ
(θ − ga)

γ
γ−1
−1 [(b− ga)− (θ − ga)] ≥ 0.

Therefore, ∂
∂g

[
(θ − ga)

[(
b−ga
θ−ga

) γ
γ−1 − 1

]]
≥ 0 and g′ (α) < 0 implies that

(
θ − 1− α1

2− α1

a

)( b− 1−α1

2−α1
a

θ − 1−α1

2−α1
a

) γ
γ−1

− 1

−(θ − 1− α2

2− α2

a

)( b− 1−α2

2−α2
a

θ − 1−α2

2−α2
a

) γ
γ−1

− 1

 ≤ 0,

and thus
∂

∂θ

(
tα2 (θ)

tα1 (θ)

)
≤ 0.

Thus, we have
tα2 (θ1)

tα1 (θ1)
≥ tα2 (θ2)

tα1 (θ2)

for a ≤ θ1 ≤ θ2 ≤ b, if α1 ≥ α2.
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7.5 Taking into account the principal’s income

In the main text, we only investigate the income distribution among agents.

In this extension, we investigate the income distribution which incoporates

the principal’s profits.

There is a principal with measure p1 and a continuum of agents with

measure 1 − p1 in the economy. The principal roughly represents the top

1% of the income distribution, p1 = 0.01. If S(q) = 1
γ
qγ, γ ∈ (0, 1), the

income share of agents in the total income under complete information is

γ, which is the same as that under incomplete information.

We introduce a variable Ψ into the model, where Ψ = a represents

an agent, and Ψ = p represents a principal. We use the decomposition

technique to investigate income distribution.

Let δSB be the principal’s profit in an economy with incomplete infor-

mation,

δSB =

(
1

p1

− 1

)
×

{
v
[
S
(
qSB
)
− θqSB

]
+ (1− v)

[
S
( ¯qSB

)
− θ̄ ¯qSB

]
−
[
vUSB + (1− v)ŪSB

]}
.

Let Y SB be income distribution in the economy with incomplete infor-

mation,

Y SB =


δSB, with probability p1

tSB, with probability (1− p1) v

t̄SB, with probabiity (1− p1) (1− v)

.

Thus, income per capita is

E
(
Y SB

)
= (1− p1)

[
vS
(
qSB
)

+ (1− v)S
(
q̄SB
)]
.

Let Ŷ SB be the normalized income distribution under the second-best

contract,

Ŷ SB =
Y SB

E (Y SB)
.

49



Ŷ SB can be viewed as a mixture of distributions,

[
Ŷ SB

∣∣∣Ψ = a
]

=
W SB

E (Y SB)

and [
Ŷ SB

∣∣∣Ψ = p
]

=
δSB

E (Y SB)
=

1− γ
p1

.

Let δFB be the principal’s profit in an economy with incomplete infor-

mation,

δFB =

(
1

p1

− 1

){
v
[
S
(
qSB
)
− θqSB

]
+ (1− v)

[
S
( ¯qSB

)
− θ̄ ¯qSB

]
Let Y FB be income distribution in an economy with complete informa-

tion,

Y FB =


δFB, with probability p1

tFB, with probability (1− p1) v

t̄FB, with probabiity (1− p1) (1− v)

.

Thus, income per capita is

E
(
Y FB

)
= (1− p1)

[
vS
(
qFB

)
+ (1− v)S

(
q̄FB

)]
.

Let Ŷ FB be normalized income distribution under the first-best con-

tract,

Ŷ FB =
Y FB

E (Y SB)
.

Ŷ FB can be viewed as a mixture of distributions,

[
Ŷ SB

∣∣∣Ψ = a
]

=
W FB

E (Y SB)

and [
Ŷ SB

∣∣∣Ψ = p
]

=
δSB

E (Y SB)
=

1− γ
p1

.

Under Assumptions 1 and 2, we have W FB �L W SB.

Theorem 5 Under Assumptions 1 and 2, we have Y FB �L Y SB.
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Proof: From

W =

{
tSB, with probability v

t
SB
, with probabiity 1− v

,

we know thatE (W ) = γ
[
vS
(
qSB
)

+ (1− v)S
(
qSB
)]

. We also have E
(
Y SB

)
=

(1− p1)
[
vS
(
qSB
)

+ (1− v)S
(
qSB
)]

. Therefore, we have

E (W )

E (Y SB)
=

γ

1− p1

.

Thus, we know that[
Ŷ SB

∣∣∣Ψ = a
]

=
W

E (Y SB)
=

E (W )

E (Y SB)

W

E (W )
=

γ

1− p1

W

E (W )
.

Similarly, we have

[
Ŷ FB

∣∣∣Ψ = a
]

=
W FB

E (Y FB)
=
E
(
W FB

)
E (Y FB)

W FB

E (W FB)
=

γ

1− p1

W FB

E (W FB)
.

From Theorem 3 and Proposition 5, we know that

W FB

E (W FB)
�cx

W SB

E (W SB)
.

Thus, based on Corollary 3.A.22 in Shaked and Shanthikumar (2010), we

have [
Ŷ FB

∣∣∣Ψ = a
]
�cx

[
Ŷ SB

∣∣∣Ψ = a
]
.

Since
[
Ŷ FB

∣∣∣Ψ = p
]

=
[
Ŷ SB

∣∣∣Ψ = p
]

= 1−γ
p1

, we have

Ŷ FB �cx Ŷ SB,

from part (b) of Theorem 3.A.12 in Shaked and Shanthikumar (2010).

Since E
(
Ŷ FB

)
= E

(
Ŷ SB

)
= 1, we know that

Y FB �L Y SB,

from Proposition 5. �
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