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1 Introduction

We investigate the inequality implications of the incentive-feasible con-

tracts, including opitmal and non-optimal contracts, when there is a trade-

o¤ between rent extraction and e¢ ciency. Contracts pin down the agent�s

payment in our model. Thus, contracts transform their types to incomes.

Thus, contracts, whether optiaml or not, have specifc implications of in-

come inequality.

There are a continuum of agents with measure 1 in the economy. The

agent�s marginal cost of production is �. Even though the distribution of

� is common knowledge, the reliaztion of � is unobservable to the prin-

cipal and it is the agent�s private information. We study the adverse

selection problem in this paper and show that the information rent in-

creases income inequality. We investigate the inequality implications of the

incentive-feasible contracts. The incentive feasible contracts satisfy both

incentive and participation constraints. We �nd that information rents in-

crease income inequality for the incentive feasible contracts under certain

conditions.

We �nd that output scheme determines the payment schedule for any

feasible contracts. The payment includes two parts, the production cost

and the information rent. Information rents can be expressed as a function

of the output. Therefore, the payment is a function of the output level. We

can characterize the payment schedule through investigating the properties

of the output scheme. In this sense the output scheme contains su¢ cient

clues to study the inequality implications of any feasible contract.

In this paper we investigate the income distribution when the agents�

payments are not in line with the marginal cost. However, in the neo-

classical theory of distribution, factors receive payments according to their

marginal product. Information frictions cause the wedge between agents�

payments and their marginal costs. We �nd that information frictions cause

inequality and situations under which we can rank contracts according to

their induced income inequality.

In order to investigate the impacts of asymmetric information on income

inequality, we �nd the optimal contract under asymmetric information and

the optimal contract under complete information. Each contract induces
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income inequality in the economy. We then compare the inequality under

asymmetric information and that under complete information. We �nd

that the inequality under asymmetric information less equal than that un-

der complete information. We rank the income equality of these contracts

using the Lorenz ordering. The Lorenz curves can be ranked without in-

tersections. The optimal contract incurs a less equal output distribution

under incomplete information than that under complete information. We

show that asymmetric infromation causes income inequality through two

channels. A less equal output distribution is the �rst channel. And the

information rent exaggerates the income inequality further.

Piketty and Saez (2003) document that the top income shares in the

United States display a rapid trend of increase since the 1970s. They pro-

pose that changing social norms regarding inequality partly explain the

rise in top wage shares. Piketty (2020) argues that idiology is an impor-

tant force determing the social inequality. Ideology is refered to "a set

of a priori plausible ideas and discourses describing how society should

be structured." We show that di¤erent contracts (mechanims) has distinct

inequality implications in the economy.

We study the inequaity implication of the incentive feasible contracts.

However, the pricipal�s objective function of our model does not re�ect the

equity concern. We also �nd that the change of social norms in�uences

inequality under the optimal contract. Baron and Myerson (1982) use a

weighted sum of the expected gains to consumers the expected pro�t for

the �rm as the social welfare function. Speci�cally, they use a parameter

to represent the relative weight between consumers and the �rm. Following

their paper, we introduce parameter � 2 [0; 1], regarding the concern for the
agent�s utility, into the social welfare function. The change of � represnets

the change of social norms. We �nd that inequality, measured by the Lorenz

ordering, in our model increases if � decreases.

Finally, we then study the impacts of information structures on income

inequality. We �rst study a more favorable information structure change,

intruduce by La¤ont and Tirole (1993). We �nd that a more favorable

distribution type imply a less equal payment schedule. We then study how

a mean-preserving spread in�uences the payment schedule.
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1.1 Reltated literatures

Our model shares a common feature with Che and Gale (1998). The prin-

cipals cares about their own surplus from the contract in both models and

they do not have equity concern in the objective funtions. In Che and Gale

(1998), the agents have two-dimentional private information. The agents

in our model have one-dimentional private information. One component of

private information in their model is wealth, which represents inequality of

the economy. The income in our model is from the contract. Thus, inequal-

ity of their model is exogenous, while inquality of ours is endogenous. The

other di¤erence between their paper and ours, is that Che and Gale (1998)

focus on allocation e¢ ciency while we concentrate on inequality induced by

the contracts. Che and Gale (1998) compare two mechnisms, the �rst-price

auction and the second-price auction, through two aspects, expected rev-

enue and expected social surplus. We compare di¤erent contracts from the

inequality perspective. Che, Gale, and Kim (2013) and Condorelli (2013)

compare market mechanisms and non-market mechanisms.

Our work is also related to Lazear and Rosen (1981). Both papers

compare the income distributions under di¤erent contracts. Lazear and

Rosen (1981) investigate how di¤erent incentive-inducing contracts under

moral hazard generate di¤erent income distributions. Our model studies

income distributions implied by di¤erent incentive-inducing contracts un-

der adverse selection. Lazear and Rosen (1981) �nd that the tournament

mechnism can produce the skewed income distribution. Similarly, we �nd

that the optimal contract under asymmetric information can generate an

income ditribution more dispersed than that under complete information.

Lazear and Rosen (1981) investigate the aggregate welfare for two cases,

the case of risk neutral agents and that of risk averse agents.1 We con-

centrate on the situation of risk neutral agents and thus, the principal�s

objective function does not incorporate the risk-sharing incentive in our

model.

Fernandez and Gali (1999) compare markets and tournaments in an

1Other literatures of tournament-based compensation schemes include Green and
Stokey (1983) and Nalebu¤ and Stiglitz (1983). The tournament is a usual scheme
in the moral hazard problem with many agents. As papers in the optimal taxation
literature, our model concentrates on the independent contrats among agents.
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economy with borrowing constraints. They concentrate on allocation ef-

�ciency of these two mechanims. Complementary to the literature which

compares the e¢ ciency of di¤erent mechanims, our paper compare the in-

come distributions under di¤erent contracts. Even though the initial wealth

distribution is exogenous in Fernandez and Gali (1999), the income distri-

bution is endogenous and depends on the mechanism in their model. The

income distribution in our model depends on contracts and is also endoge-

nous.

Dworczak et al. (2021) investigate the role of redistribution of the

price regulation in a market with private information. While Dworczak

et al. (2021) study the optimal mechanism design, the policymakers in

their model have equity concern. The principal in our model has no equity

concern. Thus, we concentrate on the implications of optimal contracts

which only re�ects the production (allocation) dimension. We intentionally

shut down the equity concern in the contract design. In this sense, the

inequality is an "unintentional" product of the contract�s incentive stimulus

e¤ects.

Mirrlees (1971) and Saez (2001) investigate the optimal income taxa-

tion in models with unobservable productivity. The objective function of

the principal (the government) is utilitarain. It is the sum of the utility

function of all agents in the economy. The social welfare function incorpo-

rates the equity concern since the agent�s utility function is risk-averse and

has curvature. Our model di¤ers from this literature in two aspects. First,

the principal�s objective function has no equity concern and only re�ects

the production dimension. Second, the optimal taxaion literature usually

concentrates on the optimal tax scheme, while we investigate the inequal-

ity implications of the incentive-feasible contracts, including opitmal and

non-optimal contracts. Wu and Zhu (2021) investigate the nonlinear tax

incidence on inequality in a Mirrleessian framework.

The rest of the paper is organized as follows. We present our bench-

mark model in Section 2. We investigate the income distribution under

the optimal contract in Section ??. Section 4 contains an analysis of social
norm change. Section 7 concludes the paper.
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2 Feasible contracts and inequality

There are a continuum of agents with measure 1 in the economy. The

agent�s marginal cost of production is �. Even though the distribution of �

is common knowledge, the reliaztion of � is unobservable to the principal

and it is the agent�s private information.

For the two-type case, we assume that

Assumption 1: � follows a two-type discrete probability distribution,

� =

(
�; with probability v

�; with probabiity 1� v
:

Even though the distribution of � is common knowledge, the reliaztion

of �s is unobservable to the principal. Let�� denote the spread of marginal

cost,

�� = � � � > 0:

There is no heterogeneity among principals. Principals run �rms and

hire agents. The principal o¤ers the contract
�
(t (�) ; q (�)) ;

�
t
�
�
�
; q
�
�
��	

.

The agent chooses to claim his type ~�. If ~� = �, the agent receives payments

t (�) and provides output q (�) to the principal�s �rm. If ~� = �, the agent

receives payments t
�
�
�
and provides output q

�
�
�
to the principal�s �rm.

We view t (�) and t
�
�
�
as agents�incomes.

The incentive compatibility constraints are

t (�)� �q (�) � t
�
�
�
� �q

�
�
�
; (1)

and

t
�
�
�
� �q

�
�
�
� t (�)� �q (�) : (2)

We call the optimal contract under incomplete information the second-

best contract. Let t = t (�), q = q (�), t = t
�
�
�
, and q = q

�
�
�
. The

incentive compatibility constraints implies that any pair of outputs
�
q; q
�

that is implimentable must satisfy the implementability condition q � q.
Assumption 2 : The principal�s �rm has production function S,

S 0 > 0; S 00 < 0; lim
q!0

S 0(q) =1; lim
q!0

S 0(q)q = 0:
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Assumption 2 guarantees that

Each principal has the objective function,

max
f(t;q);(t;q)g

v
�
S
�
q
�
� t
�
+ (1� v)

�
S (q)� t

�
:

As in La¤ont and Martimort (2002), we de�ne information rents,

U = t� �q;

for e¢ cient agents and

U = t� �q;

for ine¢ cient agents. A feasible contract has to satisfy the incentive com-

patibility constraints (1) and (2), and the participation constraints,

U � 0;

and

U � 0:

The agent�s payment scheme consists of

t = �q + U;

and

t = �q + U:

Unless we have U = U = 0, the agents� payments are not in line with

the marginal cost. The incentive compatibility constraints cause the dis-

parity between agents�payments and their marginal costs, which implies

the income di¤erences among agents. We then investigate the impacts of

informational rents U and U on income inequality.

Theorem 1 For the two-type case, we have �q+U

�q
� �q

�q
.

Let FX(�) be the distribution function of a non-negative random variable
X with a �nite positive mean. Following Gastwirth (1971) we de�ne the

Lorenz curve as follows.
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De�nition 1 The Lorenz curve of X, LX(p), is de�ned as

LX(p) =
1

E(X)

Z p

0

F�1X (r)dr;8p 2 [0; 1];

where F�1X (r) = inf fx � 0 : FX(x) � rg.

From the de�nition of the Lorenz curve, we know that, for any constant

� > 0, X and �X share the same Lorenz curve. Thus, multiplying a

random variable by a postive constant does not change its Lorenz curve.

We then de�ne the Lorenz ordering as follows.

De�nition 2 For two non-negative random variables X and Y , X Lorenz

dominates Y if, and only if,

LX(p) � LY (p);

for all p 2 [0; 1], denoted as X �L Y:

Thus, X �L Y implies that Y is less equal than X. If X �L Y , then
the Gini coe¢ cient of X is smaller than Y .

Proposition 1 Let

X =

(
�q; with probability v

�q; with probabiity 1� v
;

where x0 < x. And

Y =

(
�q + U; with probability v

�q; with probabiity 1� v
;

then we have X �L Y .

Propostion implies that

insert a picture here!

insert a picture here!
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For the continous type, we assume

Assumption 1 0: � follows a continuous probability distribution on [�; �],

with a probability density function f(�), and

d

d�

�
F (�)

f (�)

�
� 0;

where F (�) is the cumulative distribution function.

Assumption 10 implies the monotone hazard rate property.

The incentive compatibility condition is

t(�)� �q(�) � t(~�)� �q(~�);

for any (�; ~�) in �2. The local incentive constraints and local second order

condition imply _q (�) � 0.
We de�ne

"q(�) = �
� _q (�)

q (�)
:

Theorem 2 For the continous-type case, if

q (�) + � _q (�) < 0 (3)

and

"q(�) �
�

� � �
; or "q(�) �

�

4� (su¤cient condition); (4)

then we have
@

@�

�
�q (�) + U (�)

�q (�)

�
� 0: (5)

Proof:

@

@�

�
�q (�) + U (�)

�q (�)

�
=

@

@�

�
t (�)

�q (�)

�
=
t0 (�) �q (�)� (q (�) + �q0 (�)) t (�)

�2q (�)2
;(6)

=
�2q0 (�) q (�)� (q (�) + �q0 (�))

�
�q (�) +

R �
�
q (�) d�

�
�2q (�)2

;(7)

=
��q (�)2 � (q (�) + �q0 (�))

R �
�
q (�) d�

�2q (�)2
: (8)
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The numerator

��q (�)2�(q (�) + �q0 (�))
Z �

�

q (�) d� = ��q (�)2�(q (�) + �q0 (�))
�
� � �

�
q (�) ;

(9)

where � 2
�
�; �
�
: Since _q (�) < 0; q (�) > q (�) : If

q (�) + � _q (�) < 0; (10)

then the numerator of @
@�

�
�q(�)+U(�)

�q(�)

�
is negative if

��q (�)2 � (q (�) + � _q (�))
�
� � �

�
q (�) � 0; (11)

which reduces to

�� _q (�)
q (�)

� �

� � �
: (12)

A su¢ cient condition of the above inequality is

�� _q (�)
q (�)

� �

4� : (13)

�

Proposition 2 Let
X(�) = �q (�) ;

and

Y (�) = �q (�) + U (�) ;

then we have X �L Y .

Proposition implies that

insert a picture here!

We �nd that information rents increase income inequality for the incen-

tive feasible contracts under certain conditions.

We �nd that information rents also depend on the output level. Thus,

the output level plays an important role in understanding the income equal-

ity.

10



Theorem 3 For the two-type case, if q = q increases, t = t increases.

Proof: The relevant (binding) constraints are incentive compatibil-

ity constraint of the e¢ cient type and the participation constraint of the

ine¢ cient type

t� �q � t� �q; (14)

t� �q � 0: (15)

The two constraints imply

t = �q +
�
� � �

�
q; (16)

t = �q: (17)

Therefore,

t = t =
�
�q +

�
� � �

�
q
�
=
�
�q
�
=
�
� = �

� �
q = q

�
+
�
� � �

�
=�: (18)

Thus, t = t increases with q = q: �

Theorem 4 For the continous-type case, @
@�

�
t(�)et(�)
�
� 0 if and only if

�eq (�) + R �
�
eq (�) d�eq0 (�) �

�q (�) +
R �
�
q (�) d�

q0 (�)
: (19)

A su¢ cient condition is that if q (�) � eq (�) and q0 (�) � eq0 (�), then we
have @

@�

�
t(�)et(�)
�
� 0.

Proof: Since
t0 (�)et0 (�) = q0 (�)eq0 (�) ; (20)

and

t0 (�)et0 (�) � t (�)et (�) (21)

is a necessary and su¢ cient condition for

@

@�

�
t (�)et (�)

�
=
t0 (�)et (�)� t (�)et0 (�)et (�)2 � 0: (22)
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therefore, t
0(�)et0(�) � t(�)et(�) if and only if

q0 (�)eq0 (�) � �q (�) +
R �
�
q (�) d�

�eq (�) + R �
�
eq (�) d� ; (23)

or
�eq (�) + R �

�
eq (�) d�eq0 (�) �

�q (�) +
R �
�
q (�) d�

q0 (�)
: (24)

Since _q (�) < 0; q0 (�) � eq0 (�) implies
q0 (�)eq0 (�) = jq0 (�)j

jeq0 (�)j � 1: (25)

Since q (�) � eq (�) and q0 (�) � eq0 (�) ;
q (�) � eq (�) ;8 � 2 [�; �]; (26)

that is, the curve q (�) is (weakly) below the curve eq (�) ; 8 � 2 [�; �]: If
q (�) = eq (�) ; the two curves start at the same point when � = � and then,
q (�) decreases (weakly) faster than eq (�) ; and thus, is (weakly) below theeq (�) ; 8 � 2 [�; �]: Thus, we obtain

Z �

�

q (�) d� �
Z �

�

eq (�) d� : (27)

q (�) and eq (�) are positive. Hence,
�q (�) +

R �
�
q (�) d�

�eq (�) + R �
�
eq (�) d� � 1: (28)

Therefore,

t (�)et (�) = �q (�) +
R �
�
q (�) d�

�eq (�) + R �
�
eq (�) d� � 1 � q0 (�)eq0 (�) : (29)

In addition,
t0 (�)et0 (�) = �q0 (�)

�eq0 (�) = q0 (�)eq0 (�) ; (30)
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we obtain
t0 (�)et0 (�) � t (�)et (�) : (31)

Since t (�) and et (�) are positive, and t0 (�) and et0 (�) are negative, the above
inequality implies

t0 (�)et (�)et0 (�) � t (�) ; (32)

and then

t0 (�)et (�) � t (�)et0 (�) : (33)

Hence,
@

@�

�
t (�)et (�)

�
=
t0 (�)et (�)� t (�)et0 (�)et (�)2 � 0: (34)

�
We �nd that output scheme determines the payment schedule for any

feasible contracts. The payment includes two parts, the production cost

and the information rent. Information rents can be expressed as a function

of the output. Therefore, the payment is a function of the output level. We

can characterize the payment schedule through investigating the properties

of the output scheme. In this sense the output scheme contains su¢ cient

clues to study the inequality implications of any feasible contract.

3 Information frictions

In order to investigate impacts of information frictions on the income dis-

tribution, we present the income distribution under complete information.

We compare the income distributin under incomplete information and that

under complete information to �nd the impacts of asymmetric information

on the income distribution.

3.1 Two types

With two types, the optimal contract problem is

max
f(U;q);(U;q)g

v
�
S
�
q
�
� �q

�
+ (1� v)

�
S (q)� �q

�
�
�
vU + (1� v)U

�
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s:t: U � U +��q; (35)

U � U ���q; (36)

U � 0; (37)

U � 0: (38)

Constraints (35) and (36) are from the incentive compatibility constraints

(1) and (2). Constraints (37) and (38) are the participation constraints.

Proposition 3 Under Assumptions 1 and 2, the optimal contract under
asymmetric information satis�es

S 0(qSB) = �; (39)

S 0
�
qSB
�
= � +

v

1� v��; (40)

and the agents�incomes under the second-best contract are

tSB = �qSB +��qSB;

and

t
SB
= �qSB:

The optimal contract under asymmetric information is in�uenced by the

information structure and the production function. The ouput level and

transfers are determined by the optimal contract. To extract rents from the

agents, principals distort the output level of the ine¢ cient agents. To im-

plement qSB and qSB, principals o¤er transfers tSB and tSB. These transfers

determine the income distribution in the economy under the second-best

contract.

The contract under complete information only has to satisfy the partic-

ipation constraints and does not have to obey the incentive compatibility

constraints. The optimal contract problem under complete information is

max
f(U;q);(U;q)g

v
�
S
�
q
�
� �q

�
+ (1� v)

�
S (q)� �q

�
�
�
vU + (1� v)U

�
s:t: U � 0;
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U � 0:

We call the optimal contract under complete information the �rst-best

contract.

Lemma 1 Under Assumptions 1 and 2, we have

qFB=qFB < qSB=qSB:

The second-best contract incurs a less equal output distribution than

the �rst-best contract. The ��type agents under the second-best contract
have the same output level as those under the �rst-best contract, qSB =

qFB. Due to the incentive compatibility constraints, the ��type agents
under the second-best contract have the lower output level than those under

the �rst-best contract, qSB < qFB. The incomplete information casues a

downward output distortion for the ��type agents. This distortion induces
an e¢ ciency loss and a less equal output distribution. Therefore, we have

qFB=qFB < qSB=qSB.

And we have

tFB = �qFB;

and

t
FB
= �qFB:

Theorem 5 Under Assumptions 1 and 2, we have

tFB=t
FB
< tSB=t

SB
:

Let Y SB be the income distribution of the economy under the second-

best contract,

Y SB =

(
tSB; with probability v

t
SB
; with probabiity (1� v)

:

Thus, income per capita is

E
�
Y SB

�
= vtSB + (1� v)tSB: (41)
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Let Ŷ SB be the normalized income distribution,

Ŷ SB =
Y SB

E (Y SB)
=

(
tSB=E

�
Y SB

�
; with probability v

t
SB
=E
�
Y SB

�
; with probabiity (1� v)

:

Obviously, we have E
�
Ŷ SB

�
= 1.

Let Y FB be the income distribution of the economy with complete in-

formation,

Y FB =

(
tFB; with probability v

t
FB
; with probabiity (1� v)

:

Thus, income per capita is E
�
Y FB

�
= vtFB + (1 � v)tFB. Let Ŷ FB =

Y FB

E(Y FB)
. Thus, we have E

�
Ŷ FB

�
= 1.

We know that

tFB=t
FB

=
�
�qFB

�
=
�
�qFB

�
<

�
�qSB

�
=
�
�qSB

�
<

�
�qSB + USB

�
=
�
�qSB

�
= tSB=t

SB
;

where the �rst inequality is due to the output distortion and the second

inequality comes from the information rent. The fact tFB=tFB < tSB=tSB

implies that asymmeric information causes a larger relative di¤erence be-

tween income of the ��type agents and that of the ��type agents.

Theorem 6 Under Assumptions 1 and 2, we have W FB �L W SB.

Under complete information, agents produce the output levels that are

determined by the marginal cost of production. And they receive the com-

pensation for the production cost. They do not receive information rents.

Under incomplete information, the ��type agents produce the output lev-
els according to the marginal cost of production, while the ��type agents
su¤er from a downward output distortion. A less equal output distribu-

tion is the �rst channel through which information frictions cause income

inequality.

In order to keep the incentive compatibility constraint, the pricipals

have to provide su¢ cient incentives to the ��type agents. Thus, the
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��type agents receive information rents under incomplete information. In-
formation rents are tranfers beyond the compensation for the production

cost. The ��type agents do not receive information rents. Thus, informa-
tion rents increase income inequality. This is the second channel through

which information frictions cause income inequality.

The income share of agents in the total income under complete informa-

tion is 
, which is the same as that under incomplete information. However,

the income distribution within agents under incomplete information is less

equal than that under complete information. The output distortion due to

asymmetric information cause the income inequality within agents. And

the information rent exaggerates the income inequality within agents fur-

ther.

3.2 Continuous types

With the continous type, using the rent variable U (�) = t (�)� �q (�), the
optimization problem of the principal becomes

max
f(U(:);q(:))g

Z �

�

[S (q (�))� �q (�)� U (�)] f (�) d�;

subject to

_U (�) = �q (�) ; (42)

_q (�) � 0; (43)

U (�) � 0: (44)

where (42) is the incentive compatibility constraint, (43) is the imple-

mentability condition and (44) is the participation constraint.

We assume that

Assumption 3: The principal�s �rm has production function,

S(q) =
1



q
; 
 2 (0; 1):

Assumption 3 implies that the marginal product is in�nity at q = 0.

Thus, there is no shutdown for ��type agents and q is always greater than
0.
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Proposition 4 Under Assumptions 10 and 2, the optimal contract under
asymmetric information satis�es

S 0
�
qSB (�)

�
= � +

F (�)

f (�)
;

and the second best income and rent are

tSB (�) = �qSB (�) + USB (�) ; (45)

USB (�) =

Z �

�

qSB (�) d� ; (46)

USB
�
�
�
= 0: (47)

The second-best output, rent and income are

qSB (�) =

�
� +

F (�)

f (�)

� 1

�1

;

USB (�) =

Z �

�

qSB (�) d� =

Z �

�

�
� +

F (�)

f (�)

� 1

�1

d� ;

tSB (�) = �qSB (�) + USB (�) = �qSB (�) +

Z �

�

qSB (�) d� ;

= �

�
� +

F (�)

f (�)

� 1

�1

+

Z �

�

�
� +

F (�)

f (�)

� 1

�1

d� :

We have investigated the income distribution when the agents� pay-

ments are not in line with the marginal cost. In the neoclassical theory of

distribution, factors receive payments according to their marginal product.

Some literatures use the neoclassical theory to explain the observed income

distribution. Sattinger (1975) investgates how comparative advantage con-

nects the ability distribution and the income distribution in the Roy model.

Heckman and Honoré (1990) extends the classical Roy model. Gabaix and

Landier (2008) and Terviö (2008, 2009) use the sorting mechanism in as-

signment models to investigate the income distriubiton. However, they

�nd that the sorting mechanism itself is not enough to generate the fat tail

of the income distribution. Geerolf (2017) uses an assigment model with

complementarities to generate a Pareo tail of the income distribution.
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The �rst-best output and income are

qFB (�) = �
1


�1 ; (48)

tFB (�) = �qFB (�) = �




�1 : (49)

Assumption 4: @
@�

�
F (�)
�f(�)

�
� 0:

Lemma 2 Under assumption 4, we have

@

@�

�
qSB (�)

qFB (�)

�
� 0: (50)

Proof:

qSB (�)

qFB (�)
=

�
� + F (�)

f(�)

� 1

�1

�
1


�1
=

�
1 +

F (�)

�f (�)

� 1

�1

; (51)

under assumption 4, q
SB(�)
qFB(�)

decreases with �: �
Lemma 2 is equivalent to

qFB(�0)=qFB(�) � qSB(�0)=qSB(�);

for � � �0 < � < �.

Theorem 7 If Assumption 4 and

1

1� 
 �
�
� +

F (�)

f (�)

��1�
1 +

@

@�

�
F (�)

f (�)

��
� �

4� ; (52)

hold, then we have
@

@�

�
tSB (�)

tFB (�)

�
� 0: (53)

Proof:

@

@�

�
tSB (�)

tFB (�)

�
=

@

@�

�
�qSB (�)

tFB (�)

tSB (�)

�qSB (�)

�
(54)

=
@

@�

�
�qSB (�)

tFB (�)

�
tSB (�)

�qSB (�)
+
�qSB (�)

tFB (�)

@

@�

�
tSB (�)

�qSB (�)

�
:(55)
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If @
@�

�
qSB(�)
qFB(�)

�
� 0, @

@�

�
�qSB(�)
tFB(�)

�
= @

@�

�
�qSB(�)
�qFB(�)

�
= @

@�

�
qSB(�)
qFB(�)

�
� 0:

The elasticity of qSB (�) is

��q
SB0 (�)

qSB (�)
= �

� 1

�1

�
� + F (�)

f(�)

� 1

�1�1

�
1 + @

@�

�
F (�)
f(�)

��
�
� + F (�)

f(�)

� 1

�1

; (56)

=
1

1� 
 �
�
� +

F (�)

f (�)

��1�
1 +

@

@�

�
F (�)

f (�)

��
: (57)

From

@

@�

�
qSB (�)

qFB (�)

�
=
qSB0 (�) qFB (�)� qFB0 (�) qSB (�)

qFB (�)2
� 0; (58)

it implies

qSB0 (�) qFB (�)� qFB0 (�) qSB (�) (59)

=
1


 � 1

�
� +

F (�)

f (�)

� 1

�1�1

�
1 +

@

@�

�
F (�)

f (�)

��
�

1

�1 (60)

� 1


 � 1�
1


�1�1
�
� +

F (�)

f (�)

� 1

�1

(61)

� 0; (62)

or �
� +

F (�)

f (�)

��1�
1 +

@

@�

�
F (�)

f (�)

��
� ��1 � 0; (63)

or

�

�
� +

F (�)

f (�)

��1�
1 +

@

@�

�
F (�)

f (�)

��
� 1: (64)

Then
1

1� 
 �
�
� +

F (�)

f (�)

��1�
1 +

@

@�

�
F (�)

f (�)

��
> 1: (65)

Thus, the elasticity of qSB (�)

��q
SB0 (�)

qSB (�)
> 1: (66)
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Therefore, the �rst condition of Theorem 2 is satis�ed

qSB (�) + �qSB0 (�) < 0: (67)

Thus, the numerator of @
@�

�
tSB(�)
�qSB(�)

�
is negative if the second condition of

Theorem 2 is satis�ed; that is, if

1

1� 
 �
�
� +

F (�)

f (�)

��1�
1 +

@

@�

�
F (�)

f (�)

��
� �

4� : (68)

�
Theorem 6 is equivalent to

tFB(�0)=tFB(�) < tSB(�0)=tSB(�);

for � � �0 < � < �.

Next, we examine the example of continous type following uniform dis-

tribution on � = [�; �] and � = [0; �]:

Corollary 8 For continous type following uniform distribution on � =

[�; �]; @
@�

�
qSB(�)
qFB(�)

�
� 0: For � = [0; �]; @

@�

�
tSB(�)
tFB(�)

�
� 0; for � = [�; �]; a

su¢ cient condition for @
@�

�
tSB(�)
tFB(�)

�
� 0 is � � 
+1

2
�:

Proof: For continous type following uniform distribution on � =

[�; �]; F (�)
f(�)

= � � �: Thus,

qFB (�) = �
1


�1 ; (69)

tFB (�) = �




�1 ; (70)

qSB (�) = (2� � �)
1


�1 ; (71)Z �

�

q
�

(�) d� =
1

2


 � 1



h�
2� � �

� 


�1 � (2� � �)




�1

i
; (72)

tSB (�) = � (2� � �)
1


�1 +
1

2


 � 1



h�
2� � �

� 


�1 � (2� � �)




�1

i
:(73)

Condition (52) reduces to

2�2 � 2
�� � (1� 
) �� � 0; (74)
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which requires (a su¢ cient condition)

� �

� +

q

2�

2
+ 2 (1� 
) ��
2

; (75)

that is,

� � 
 + 1

2
�: (76)

For � = [0; �];

tSB (�)

tFB (�)
=

� (2�)
1


�1 + 1
2

�1



h�
2�
� 


�1 � (2�)




�1

i
�




�1

; (77)

=
2

1

�1 �




�1 + 1

2

�1


2




�1

�
�




�1 � �




�1

�
�




�1

; (78)

= 2
1


�1 � 1
2


 � 1



2




�1 +
1

2


 � 1



2




�1

�
�

�

� 


�1

; (79)

which decreases with �: �

4 The social norms

Piketty and Saez (2003) propose that changing social norms regarding in-

equality plays an important role in raising inequality in the United Stattes

since the 1970s. We then introduce a parameter of social norms regarding

inequality into our benchmark model. The principal maximizes a weighted

average of its surplus and of the agent�s rent U with � 2 [0; 1] for the

agent�s rent. For two-type case, the outputs are given by

q� = q�;

S 0 (q�) = � +
v

1� v (1� �)4�:

If �2 < �1; q
�2 < q�1 ; thus q�2=q�2 > q�1=q�1 : By theorem 3, t�2 = t�2 >

t�1 = t
�1 :
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For continous type, the principal�s program writes now as follows.

max
f(U(:);q(:))g

Z �

�

[S (q (�))� �q (�)� (1� �)U (�)] f (�) d�;

subject to

_U (�) = �q (�) ; (80)

_q (�) � 0; (81)

U (�) � 0: (82)

The output is given by

S 0 (q (�)) = � + (1� �)F (�)
f (�)

:

Lemma 3 Under assumption 3 and 4, for �2 < �1;

@

@�

�
q�2 (�)

q�1 (�)

�
� 0: (83)

Proof:

q�2 (�)

q�1 (�)
=

�
� + (1� �2)F (�)f(�)

� 1

�1

�
� + (1� �1)F (�)f(�)

� 1

�1

=

 
� + (1� �2)F (�)f(�)

� + (1� �1)F (�)f(�)

! 1

�1

(84)

=

 
1 + (1� �2) F (�)�f(�)

1 + (1� �1) F (�)�f(�)

! 1

�1

: (85)

Denote G (�) � F (�)
�f(�)

; by assumption 4,

@

@�

�
1 + (1� �2)G (�)
1 + (1� �1)G (�)

�
(86)

=
1

[1 + (1� �1)G (�)]2
[(�1 � �2)G0 (�)] � 0; (87)

thus
@

@�

�
q�2 (�)

q�1 (�)

�
� 0: (88)

�
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Since

q� (�) =

�
� + (1� �)F (�)

f (�)

� 1

�1

; (89)

q�0 (�) =
1


 � 1

�
� + (1� �)F (�)

f (�)

� 1

�1�1

�
1 + (1� �) @

@�

F (�)

f (�)

�
;(90)

we have the following theorem.

Theorem 9 For the continous-type case, for �2 < �1;
@
@�

�
t�2 (�)
t�1 (�)

�
� 0 if

and only if

@

@�

0B@�
�
� + (1� �)F (�)

f(�)

� 1

�1

+
R �
�

�
� + (1� �)F (�)

f(�)

� 1

�1
d�

1

�1

�
� + (1� �)F (�)

f(�)

� 2�


�1
�
1 + (1� �) @

@�
F (�)
f(�)

�
1CA � 0: (91)

Proof: This is given by the necessary and su¢ cient condition in The-
orem 4:

�q
�1 (�) +

R �
�
q
�1 (�) d�

q
�1 0 (�)

�
�q

�2 (�) +
R �
�
q
�2 (�) d�

q
�2 0 (�)

; (92)

or
@

@�

 
�q

�
(�) +

R �
�
q
�
(�) d�

q�0 (�)

!
� 0: (93)

�
We examine uniform distribution on � = [�; �] as an example. Under

this example,

F (�)

f (�)
= � � �;

q
�

(�) = [� + (1� �) (� � �)]
1


�1 = [(2� �)� � (1� �)�]
1


�1 ;

q
�0 (�) =

1


 � 1 [(2� �)� � (1� �)�]
1


�1�1 (2� �);Z �

�

q
�

(�) d� =
1

2� �

 � 1



n�
(2� �) � � (1� �) �

� 


�1 � [(2� �) � � (1� �) �]




�1

o
:

The output ratio

q�2 (�)

q�1 (�)
=
[� + (1� �2) (� � �)]

1

�1

[� + (1� �1) (� � �)]
1


�1
=

�
(2� �2)� � (1� �2)�
(2� �1)� � (1� �1)�

� 1

�1

:
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@

@�

�
(2� �2)� � (1� �2)�
(2� �1)� � (1� �1)�

�
=

1

[(2� �1)� � (1� �1)�]2
f[(2� �1)(1� �2)� (2� �2)(1� �1)] �g ;

=
1

[(2� �1)� � (1� �1)�]2
[(�1 � �2) �] � 0;

with equality when � = 0: Thus,

@

@�

�
q�2 (�)

q�1 (�)

�
� 0; (94)

with equality when � = 0:

Then, denote a � 1��
2�� � 0;

@a
@�
< 0:

�q
�
(�) +

R �
�
q
�
(�) d�

q�0 (�)

=
� [(2� �)� � (1� �)�]

1

�1

1

�1 [(2� �)� � (1� �)�]

1

�1�1 (2� �)

+

1
2��


�1



n�
(2� �) � � (1� �) �

� 


�1 � [(2� �) � � (1� �) �]




�1

o
1

�1 [(2� �)� � (1� �)�]

1

�1�1 (2� �)

=
� [(2� �)� � (1� �)�]

1

�1(2� �)

+

1
2��


�1



1

�1(2� �)

( �
(2� �) � � (1� �) �

� 


�1

[(2� �)� � (1� �)�]
1


�1�1
� [(2� �) � � (1� �) �]2

)
;

= (
 � 1)
(
� (� � a�) + 1

(2� �)2

 � 1



"
(2� �)




�1
�
� � a�

� 


�1

(2� �)
1


�1�1 (� � a�)
1


�1�1
� (2� �)2 (� � a�)2

#)

= (
 � 1)
(
� (� � a�) + 
 � 1




" �
� � a�

� 


�1

(� � a�)
1


�1�1
� (� � a�)2

#)
;

= (
 � 1) � (� � a�) + (
 � 1)
2




"�
� � a�

� 


�1 � (� � a�)




�1

(� � a�)
1


�1�1

#
: (95)
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Denote

� � @

@a

"�
� � a�

� 


�1 � (� � a�)




�1

(� � a�)
1


�1�1

#

=
1h

(� � a�)
1


�1�1
i2 �

1� 
 (� � a�)




�1+
1


�1�2

(�
� � a�
� � a�

� 


�1�1


 �
�
� � a�
� � a�

� 


�1

(2� 
) + 2� 2

)
:

Denote � �
��

��a�
��a�

� 


�1�1


 �
�
��a�
��a�

� 


�1
(2� 
) + 2� 2


�
:

Since � 2 [�;+1); 8�; when � = �; � = 2
 � 2 + 2� 2
 = 0; and

@�

@�
=

�
� � a�
� � a�

� 


�1�2 1

� � a�




 � 1

�
1� (2� 
) � � a�

� � a�

�
> 0;

thus,

� � 0: (96)

Moreover,

�j�=0 = 0: (97)

Hence,

� � 0: (98)

Moreover,

@ [(
 � 1) � (� � a�)]
@a

=
@
�
(
 � 1) �2 � (
 � 1) ��a

�
@a

= (1� 
) �� � 0;
(99)

with equality when � = 0: Thus,

@

@a

 
�q

�
(�) +

R �
�
q
�
(�) d�

q�0 (�)

!
� 0: (100)

With @a
@�
< 0; we obtain

@

@�

 
�q

�
(�) +

R �
�
q
�
(�) d�

q�0 (�)

!
� 0; (101)
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with equality when � = 0: �

Furthermore, we compare the case of � = 1 with �rst best.

Corollary 10 For two type
�
�; �
	
, t�=1 = t�=1 > tFB = t

FB
; for continous

case, @
@�

�
t
�=1

(�)

tFB (�)

�
� 0:

Proof: For two type
�
�; �
	
,

q�=1 = q�; (102)

q�=1 = q�; (103)

t�=1 = �q� +4�q�; (104)

t
�=1

= �q�: (105)

tFB = t
FB

=
�
� = �

� 


�1 ; (106)

t�=1 = t
�=1

=
�q� +4�q�

�q�
=
�
� = �

� 


�1 +4� = � > tFB = tFB: (107)

For continous type on � = [�; �];

q
FB

(�) = �
1


�1 ; (108)

t
FB

(�) = �




�1 ; (109)

q
�=1

(�) = �
1


�1 ; (110)

t
�=1

(�) = �




�1 +

 � 1



�
�




�1 � �




�1

�
: (111)

Therefore,

t
�=1
(�)

tFB (�)
=

�




�1 + 
�1



�
�




�1 � �




�1

�
�




�1

; (112)

= 1 +

 � 1



�




�1 � �




�1

�




�1
; (113)

= 1 +

 � 1



�
�

�

� 


�1

� 
 � 1



; (114)

which decreases with �: �
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5 Change of information structure

5.1 More favorable distribution of types

Suppose that 0 < v < v1 < 1. We have

�1 =

(
�; with probability v1
�; with probabiity 1� v1

:

From Theorem ?? we have

qSB
1
= (�)

1

�1 ;

and

qSB1 =

�
� +

v1
1� v1

��

� 1

�1

:

Lemma 4 Under Assumptions 1 and 2, if 0 < v < v1 < 1, we have

qSB
1
=qSB1 > qSB=qSB:

Since the output level of the e¢ cient type is not a¤ected by the proba-

bility v, Lemma 4 implies that the di¤erence of the output levels between

two types is larger when the distribution is more favorable. This result

also holds for continuous-type distributions. If we use the �rst-best con-

tract under complete information as a benchmark, which does not depends

on the type distribution, we �nd that the output distortion relative to the

�rst-best contract is larger when the distribution is more favorable.

By theorem 3, we obtain the following theorem.

Theorem 11 Under Assumptions 1 and 2, if 0 < v < v1 < 1, we have

tSB1 =t
SB
1 > tSB=t

SB
:

Even though income levels of both types change simultaneously, The-

orem 11 implies that the wage pro�le is steeper when the distribution is

more favorable.
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For continuous-type distributions, according to the de�nition in La¤ont

and Tirole (1993, chap.1), the distribution on G on � = [�; �] is more

favorable than the distribution F on the same interval if G(�) � F (�) for
all � and g(�)

G(�)
� f(�)

F (�)
for all �: They are satis�ed by any two cumulative

distribution function G and F such that G =M (F ) ; whereM is increasing

and concave, for example, G (�) = F (�)� where � 2 (0; 1]:
Assume F (�) s U(�; �); then,

F (�)

f (�)
= � � �; (115)

G (�)

g (�)
=

1

�
(� � �) : (116)

Lemma 5 Under assumption 3 , for �2 < �1;

@

@�

�
q�2 (�)

q�1 (�)

�
� 0: (117)

Proof:

q�2 (�)

q�1 (�)
=

�
� + 1

�2
(� � �)

� 1

�1

�
� + 1

�1
(� � �)

� 1

�1

=

0@
�
1 + 1

�2

�
� � 1

�2
��

1 + 1
�1

�
� � 1

�1
�

1A
1


�1

: (118)

@

@�

0@
�
1 + 1

�2

�
� � 1

�2
��

1 + 1
�1

�
� � 1

�1
�

1A =
1��

1 + 1
�1

�
� � 1

�1
�
�2 ��1 � �2�2�1

�

�
� 0;

(119)

with equality when � = 0: Thus,

@

@�

�
q�2 (�)

q�1 (�)

�
� 0: (120)

�

Then, we prove that

@

@�

 
�q

�
(�) +

R �
�
q
�
(�) d�

q� 0 (�)

!
� 0: (121)
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q� (�) =

��
1 +

1

�

�
� � 1

�
�

� 1

�1

; (122)

q�0 (�) =
1


 � 1

��
1 +

1

�

�
� � 1

�
�

� 1

�1�1

�
1 +

1

�

�
; (123)Z �

�

q
�

(�) d� =
1�

1 + 1
�

� 
 � 1



(��
1 +

1

�

�
� � 1

�
�

� 


�1

�
��
1 +

1

�

�
� � 1

�
�

� 


�1
)
:(124)

Thus, denote b � 1=�
1+1=�

2 (0; 1]; @b
@�
< 0; we obtain

�q
�
(�) +

R �
�
q
�
(�) d�

q� 0 (�)
(125)

= (
 � 1) � (� � b�) + (
 � 1)
2




" �
� � b�

� 


�1

(� � b�)
1


�1�1
� (� � b�)2

#
;(126)

which is the same with equation (95) with a replaced by b: Thus, with the

same logic, we obtain

@

@�

 
�q

�
(�) +

R �
�
q
�
(�) d�

q� 0 (�)

!
� 0: (127)

with equality when � = 0: �
Thus, for continuous-type distributions, we show that t1(�

0)=t1(�) >

t(�0)=t(�) for �0 < �, when �1 is more favorable than �.

The marginal cost of production does not change when the distribution

is more favorable. The di¤erence is the probability distribution of types.

The change of the type distribution causes the principal to revise the con-

tract and the wage o¤er accordingly. The principal o¤ers a contract which

displays a less equal wage pro�le. As in Costinot and Vogel (2010), the

change of the wage pro�le refelct the changes in the return to skill. When

the distribution is more favorable to the principal, the relative income dif-

ference between the e¢ cient type agents and the ine¢ cient type agents

becomes larger.
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6 Skill diversity

We investigate the imparcts of skill diversity on the contract. We show

that a mean-preserving spread of the type distribution increases income

inequality under the optimal contract. We prove it for continous type with

uniform distribution.

The marginal cost � 2 � = [a; b] is distributed according to the density
function

f (�) = ���;

and cumulative distribution function

F (�) =

Z �

a

���d� =
�

� + 1

�
��+1 � a�+1

�
;

where � � 0, b > a > 0 and � = �+1
b�+1�a�+1 .

When � = 0, we have uniform distribution, and the second best out-

comes are

qSB (�) = 2
1


�1

�
� � a

2

� 1

�1
;

USB (�) = 2
1


�1

Z b

�

�
� � a

2

� 1

�1
d� ;

tSB (�) = 2
1


�1

Z b

�

�
� � a

2

� 1

�1
d� + � � 2

1

�1

�
� � a

2

� 1

�1
:

By the change of variable,

USB (�) = 2
1


�1

Z b

�

�
� � a

2

� 1

�1
d� = 2

1

�1

Z b�a
2

��a
2

t
1


�1dt;

= 2
1


�1

 � 1



h
t




�1

ib�a
2

��a
2

;

= 2
1


�1

 � 1



��
b� a

2

� 


�1 �

�
� � a

2

� 


�1
�
:
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Hence

qSB (�) = 2
1


�1

�
� � a

2

� 1

�1
;

USB (�) = 2
1


�1

 � 1



��
b� a

2

� 


�1 �

�
� � a

2

� 


�1
�
;

tSB (�) = 2
1


�1

 � 1



��
b� a

2

� 


�1 �

�
� � a

2

� 


�1
�
+ � � 2

1

�1

�
� � a

2

� 1

�1
:

After mean preserving spread, e� 2 e� = [e; d] = [a� c; b+ c] :With uniform
distribution, we have e� = h+ p�:
Thus

h+ pa = e;

h+ pb = d:

Hence,

p =
d� e
b� a;

h = e� d� e
b� aa:

Thus,

e� = e� d� e
b� aa+

d� e
b� a�;

= a� c� b+ c� (a� c)
b� a a+

b+ c� (a� c)
b� a �;

= a� c� b� a+ 2c
b� a a+

b� a+ 2c
b� a �:

Denote A � b�a+2c
b�a ; E = a � c � Aa = �a+b

b�ac; thus
e� = E + A� =

a� c� Aa+ A� = A(� � a) + a� c:

Proposition 5 i) q
SB(�)eqSB(e�) and USB(�)eUSB(e�) increase with �;

ii) if 
 > b
; �qSB(�)e�eqSB(e�) and tSB(�)etSB(e�) increase with �; where b
 = (3b�2a)(b�a+2c)+(a�c)(b�a)
(4b�2a)(b�a+2c)+(a�c)b :

Proof:
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qSB (�)eqSB �e�� = 2
1


�1
�
� � a

2

� 1

�1

2
1


�1
�
E + A� � a�c

2

� 1

�1

=

�
� � a

2

E + A� � a�c
2

� 1

�1

:

@

@�

�
� � a

2

E + A� � a�c
2

�
=

1�
E + A� � a�c

2

�2 ��E + A� � a� c2
�
� A

�
� � a

2

��
;

where �
E + A� � a� c

2

�
� A

�
� � a

2

�
;

= E + A� � a� c
2

� A� + Aa
2
;

= E � a� c
2

+ A
a

2
;

= �a+ b
b� ac�

a� c
2

+
b� a+ 2c
b� a

a

2
;

= �2 (a+ b) c+ (a� c) (b� a)
2 (b� a) +

(b� a+ 2c) a
2 (b� a) ;

=
ba� a2 + 2ca� 2(a+ b)c� (ab� a2 � cb+ ca)

2 (b� a) ;

=
ba� a2 + 2ca� 2ac� 2bc� ab+ a2 + cb� ca

2 (b� a) ;

=
�bc� ca
2 (b� a) ;

= � (b+ a)c
2 (b� a) < 0:

Thus,
@

@�

�
� � a

2

B + A� � a�c
2

�
< 0;

and

@

@�

0@ qSB (�)eqSB �e��
1A > 0:
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Then,

�qSB (�)e�eqSB �e�� =
� � 2

1

�1
�
� � a

2

� 1

�1

e� � 2 1

�1

�e� � a�c
2

� 1

�1
;

=

0@ �
�1
�
� � a

2

�
e�
�1 �e� � a�c

2

�
1A 1


�1

;

=

 
�
�1

�
� � a

2

�
(A(� � a) + a� c)
�1

�
A(� � a) + a�c

2

�! 1

�1

;

=

 
(Z + a)
�1

�
Z + a

2

�
(AZ + a� c)
�1

�
AZ + a�c

2

�! 1

�1

;

where Z = (� � a) 2 [0; a� b]:

@

@Z

"
(Z + a)
�1

�
Z + a

2

�
(AZ + a� c)
�1

�
AZ + a�c

2

�#
=

1�
(AZ + a� c)
�1

�
AZ + a�c

2

��2 � (Z + a)
�2 (AZ + a� c)
�2E ��
(
 � 1)

�
Z +

a

2

��
AZ +

a� c
2

�
+
1

2
(Z + a) (AZ + a� c)

�
:

Since E = �a+b
b�ac < 0; we look at whether (
 � 1)

�
Z + a

2

� �
AZ + a�c

2

�
+

1
2
(Z + a) (AZ + a� c) > 0: This is the case if

1

2
[(
 � 1) (2Z + a) (2AZ + a� c) + (Z + a) (AZ + a� c)] > 0:

Since Z = � � a; the above inequality is equivalent to

(4
 � 3)AZ2 + (2
 � 1) (a� c+ aA)Z + 
a (a� c) > 0:

4 = (2
 � 1)2 (a� c+ aA)2 � 4(4
 � 3)A
a (a� c) :

Since (2
 � 1)2 > (4
� 3)
 > 0; (a� c+ aA)2 > 4Aa (a� c) > 0; we have
4 > 0: Hence, for 
 > 3

4
> 1

2
; the left hand side is a parabola towards

the upside with negative axis of symmetry and two negative roots. The

intersept with the vertical axis is 
a (a� c) > 0: Thus, for Z 2 [0; b � a];
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the parabola is positive.

For 
 = 3
4
;

(4
 � 3)AZ2 + (2
 � 1) (a� c+ aA)Z + 
a (a� c) ;

=
1

2
(a� c+ aA)Z + 3

4
a (a� c) :

It is a straight line with negative slope and positive intercept with the

vertical axis. Hence for it to be positive on the interval, it is su¢ cient that

the line is positive at b� a:

1

2
(a� c+ aA) (b� a) + 3

4
a (a� c)

=
1

4
[2 (a� c+ aA) (b� a) + 3a (a� c)] ;

=
1

4

�
2

�
a� c+ ab� a+ 2c

b� a

�
(b� a) + 3a (a� c)

�
;

=
1

4
[2 (a� c) (b� a) + a (b� a+ 2c) + 3a (a� c)] > 0:

Thus, 1
2
(a� c+ aA)Z + 3

4
a (a� c) is positive on Z 2 [0; b� a].

For 
 < 3
4
; it is a parabola towards the downside with positive intercept.

For the parabola to be positive on the interval Z 2 [0; b� a]; it is su¢ cient
that it is positive at b� a: That is, it is su¢ cient that

(4
 � 3)A (b� a)2 + (2
 � 1) (a� c+ aA) (b� a) + 
a (a� c) > 0;

or we can solve for


 > b
 � (3b� 2a) (b� a+ 2c) + (a� c) (b� a)
(4b� 2a) (b� a+ 2c) + (a� c) b :

where 0 < (3b�2a)(b�a+2c)+(a�c)(b�a)
(4b�2a)(b�a+2c)+(a�c)b < 3

4
:

Thus, if 
 > b
; (4
�3)AZ2+(2
 � 1) (a� c+ aA)Z+
a (a� c) > 0 for
all Z: Hence, if 
 > b
; @

@Z

�
(Z+a)
�1(Z+a

2 )
(AZ+a�c)
�1(AZ+a�c

2 )

�
< 0; and @

@�

�
�qSB(�)e�eqSB(e�)

�
>

0:
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Next, we examine the ratio of informational rent.

USB (�)eUSB �e�� =
2

1

�1 
�1




h�
b� a

2

� 


�1 �

�
� � a

2

� 


�1
i

2
1


�1 
�1



��
b+ c� a�c

2

� 


�1 �

�e� � a�c
2

� 


�1
� ;

=

�
b� a

2

� 


�1 �

�
� � a

2

� 


�1�

b+ c� a�c
2

� 


�1 �

�
A(� � a) + a�c

2

� 


�1
;

=
1

A




�1

�
b� a

2

� 


�1 �

�
� � a

2

� 


�1�

b+c�a�c
2

A

� 


�1 �

�
� � a+ a�c

2A

� 


�1

:

Denote X � � � a + a�c
2A
; B � a

2
� a�c

2A
; N �

�
b+c�a�c

2

A

��
= [Q (b� a)]� ;

where Q =
b�a

2
+ 3
2
c

b�a+2c ; M �
�
b� a

2

��
; � = 



�1 : M is the maximum of

(X +B)� ; and N is the maximum of X�:We can also prove that M < N:

USB (�)eUSB �e�� = 1

A�
M � (X +B)�

N �X�
=
1

A�
(X +B)� �M
X� �N ;

where X 2
�
a�c
2A
; Q(b� a)

�
; M > 0; N > 0; � 2 (�1; 0) : Denote

(X +B)� �M
X� �N � f (X) :

f 0 (X) =
1

(X� �N)2
�
� (X +B)��1 (X� �N)� ((X +B)� �M)�X��1� ;

=
1

(X� �N)2
� (X +B)��1X��1 �M (X +B)1�� �NX1�� �B

�
:

Since � < 0; f 0 (X) > 0 if and only if

F (X) �M (X +B)1�� �NX1�� �B < 0:
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When � = b; � � a
2
= b� a

2
; � � a+ a�c

2A
=

b+c�a�c
2

A
= Q (b� a) ; thus

F (X) = M (X +B)1�� �NX1�� �B;

=
�
b� a

2

�� �
� � a

2

�1��
� [Q (b� a)]�

�
� � a+ a� c

2A

�1��
�
�
a

2
� a� c

2A

�
;(128)

=
�
b� a

2

�
�
�
� � a+ a� c

2A

�
�
�
a

2
� a� c

2A

�
;

= 0:

Moreover,

F 0(X) = (1� �)
�
M (X +B)�� �NX��� < 0

if and only if

M (X +B)�� �NX�� < 0;

or

X >
BQ(b� a)

b� a
2
�Q(b� a) = Q(b� a):

since we can prove that B
b�a

2
�Q(b�a) = 1: Thus, if and only if X > Q(b� a);

which is impossible, since X 2
�
a�c
2A
; Q(b� a)

�
: Hence,

F 0(X) > 0 for X 2 [a� c
2A

;Q(b� a));
F 0(X) = 0 for X = Q(b� a):

Since F (X) j�=b = 0; and F 0(X) � 0 on X 2 [a�c
2A
; Q(b � a)]; we obtain

F (X) � 0 on X 2
�
a�c
2A
; Q(b� a)

�
; that is, F (X) < 0 on the interval X 2

[a�c
2A
; Q(b�a)) and F (X) j�=b = 0: Thus, f 0 (X) > 0 on X 2 [a�c

2A
; Q(b�a));

and f 0 (X) = 0 at Q(b�a): In another word, @
@�

�
USB(�)eUSB(e�)

�
> 0 on � 2 [a; b)

and @
@�

�
USB(�)eUSB(e�)

�
= 0 at � = b:
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Next, we look at the income ratio. Denote x � eUeU+e�eq ;
tSB (�)etSB �e�� =

U + �qeU + e�eq ;
=

UeU + e�eq + �qeU + e�eq ;
=

eUeU + e�eq UeU + e�eqeU + e�eq �qe�eq ;
=

eUeU + e�eq UeU +
 
1�

eUeU + e�eq
!
�qe�eq ;

= x
UeU + (1� x) �qe�eq ;

= x
UeU + �qe�eq � x�qe�eq ;

=
�qe�eq + x

�
UeU � �qe�eq

�
:

@

@�

0@ tSB (�)etSB �e��
1A =

@

@�

�
�qe�eq
�
+
@x

@�

�
UeU � �qe�eq

�
+ x

�
@

@�

�
UeU
�
� @

@�

�
�qe�eq
��

;

=
@

@�

�
�qe�eq
�
+
@x

@�

�
UeU � �qe�eq

�
+ x

@

@�

�
UeU
�
� x @

@�

�
�qe�eq
�
;

= (1� x) @
@�

�
�qe�eq
�
+
@x

@�

�
UeU � �qe�eq

�
+ x

@

@�

�
UeU
�
:

We have known that x > 0; 1�x > 0; @
@�

�
�qe�eq
�
> 0 if 
 > e
; and @

@�

�
UeU
�
� 0:

x =
eUeU + e�eq = 1

1 +
e�eqeU
:
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e�eqeU =
(A(� � a) + a� c) 2

1

�1
�
A(� � a) + a�c

2

� 1

�1

2
1


�1 
�1



h�
b+ c� a�c

2

� 


�1 �

�
A(� � a) + a�c

2

� 


�1
i ;

=
(A(� � a) + a� c)

�
A(� � a) + a�c

2

� 1

�1


�1



h�
b+ c� a�c

2

� 


�1 �

�
A(� � a) + a�c

2

� 


�1
i ;

=
(X +D)X��1

1
�
(N �X�)

� g (X) :

g0 (X) =
1�

1
�
(N �X�)

�2 �
��
X��1 + (X +D) (�� 1)X��2� 1

�
(N �X�)� 1

�

�
��X��1� (X +D)X��1

�
;

=
1�

1
�
(N �X�)

�2 �
�
1

�
X��1 (N �X�) +

�� 1
�

(X +D)X��2 (N �X�) +X��1 (X +D)X��1
�
;

=
1�

1
�
(N �X�)

�2 �
�
1

�
XX��2 (N �X�) +

�� 1
�

(X +D)X��2 (N �X�) +X��1 (X +D)X��1
�
;

=
1�

1
�
(N �X�)

�2 �
��
1

�
X +

�� 1
�

(X +D)

�
X��2 (N �X�) +X��1 (X +D)X��1

�
;

=
1�

1
�
(N �X�)

�2 �
��
1

�
X +

�
1� 1

�

�
X +

�
1� 1

�

�
D

�
X��2 (N �X�) +X��1 (X +D)X��1

�
;

=
1�

1
�
(N �X�)

�2 �
��
X +

�
1� 1

�

�
D

�
X��2 (N �X�) +X��1 (X +D)X��1

�
> 0: (129)
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Thus, @
@�

�e�eqeU � > 0; and we have
@x

@�
< 0:

UeU � �qe�eq
=

2
1


�1 
�1



h�
b� a

2

� 


�1 �

�
� � a

2

� 


�1
i

2
1


�1 
�1



��
b+ c� a�c

2

� 


�1 �

�e� � a�c
2

� 


�1
� � � � 2

1

�1
�
� � a

2

� 1

�1

e� � 2 1

�1

�e� � a�c
2

� 1

�1
;

=

h�
b� a

2

� 


�1 �

�
� � a

2

� 


�1
i

h�
b+ c� a�c

2

� 


�1 �

�
A(� � a) + a�c

2

� 


�1
i � � �

�
� � a

2

� 1

�1

(A(� � a) + a� c) �
�
A(� � a) + a�c

2

� 1

�1
;

=
1

A�

(
M � (X +B)�

N �Xm
� (X + C) (X +B)

��1

(X +D)X��1

)
;

=
1

A�

(
[M � (X +B)�] (X +D)X��1 � (N �Xm) (X + C) (X +B)��1

(N �Xm) (X +D)X��1

)
:

D < C implies that

0 < (X +D) < (X + C) :

Furthermore,

[M � (X +B)�]X��1 � (N �X�) (X +B)��1 ;

= (X +B)��1X��1 �M (X +B)1�� �NX1�� �B
�
< 0:

Thus,

0 < [M � (X +B)�]X��1 < (N �X�) (X +B)��1 :

Hence,

[M � (X +B)�] (X +D)X��1 < (N �X�) (X + C) (X +B)��1 ;

and thus

[M � (X +B)�] (X +D)X��1 � (N �X�) (X + C) (X +B)��1 < 0:
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Hence,
UeU � �qe�eq < 0:

Hence,
@x

@�

�
UeU � �qe�eq

�
> 0:

Thus, if 
 > e
 (su¢ cient condition),
@

@�

0@ tSB (�)etSB �e��
1A = (1� x) @

@�

�
�qe�eq
�
+
@x

@�

�
UeU � �qe�eq

�
+ x

@

@�

�
UeU
�
> 0:

7 Conclusion

We investigate how information frictions in�uence income distributions

when there is a trade-o¤ between rent extraction and e¢ ciency. We study

the adverse selection problem in this paper and show that the information

rent increases income inequality.

We �nd that information frictions cause inequality. And the optimal

contract incurs a less equal output distribution.

We also �nd that the change of social norms in�uences inequality under

the optimal contract.

We then study the impacts of information structures on income inequal-

ity.
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8 Appendix

8.1 Proof of Lemma 4

Proof: We have

qSB
1
=qSB1 = (�)

1

�1 =

�
� +

v1
1� v1

��

� 1

�1

=

�
�

�
+

v1
1� v1

��

� 1
1�


>

�
�

�
+

v

1� v��
� 1

1�


= qSB=qSB;

since 0 < v < v1 < 1. �

8.2 Proof of Theorem 11

Proof: We have

tSB1 =t
SB
1 =

�
�qSB
1
+��qSB1

�
=�qSB1

=
�
�=�
� �
qSB
1
=qSB1

�
+��=�

>
�
�=�
� �
qSB=qSB

�
+��=�

= tSB=t
SB
;

since we have qSB
1
=qSB1 > qSB=qSB from Lemma 4. �

8.3 Tools

To compare the income distributions under di¤erent contracts, we need

more tools.

To establish the Lorenz ordering between two non-negative random vari-

ables, we can �nd the connection between the Lorenz ordering and the sec-

ond order stochastic dominance. Following Ok (2020) we de�ne the second

order stochastic dominance as fololows.

De�nition 3 Let FX(�) and FY (�) be the distribution functions of random
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variables X and Y , respectively. X second order stochastic dominates Y ,

denoted as X �SSD Y , if, and only if,Z z

�1
FX(�)d� �

Z z

�1
FY (�)d� ;

for all z 2 R, provided that the integrals exist.

Following Shaked and Shanthikumar (2010) we de�ne the convex order

of two random variables as follows.

De�nition 4 For two random variables X and Y , X is smaller than Y in

the convex order, denoted as X �cx Y , if, and only if,

E [� (X)] � E [� (Y )] ;

for all convex functions � : R! R, provided that the expectations exist.

Proposition 6 Let X and Y be two random variables such that E (X) =

E (Y ). Then X �cx Y if, and only if, X �SSD Y , i.e.

X �cx Y () X �SSD Y:

Proposition 7 Let X and Y be two non-negative random variables such

that E (X) = E (Y ). Then X �cx Y if, and only if, X �L Y , i.e.

X �cx Y () X �L Y:

Propositions 6 and 7 imply that X �L Y , X �cx Y , and X �SSD Y
are equivalent if X and Y are two non-negative random variables with

equal means. For two non-negative random variables X and Y such that

E(X) > 0, E(Y ) > 0, and E(X) 6= E(Y ), we cannot use Propositions

6 and 7 directly. However, for any non-negative random variable X with

E(X) > 0, we know that X and X
E(X)

have the same Lorenz curve. Thus,

X �L Y is equivalent to X
E(X)

�L Y
E(Y )

. In order to compare Lorenz curves

of random variables X and Y , we can investigate random variables X
E(X)

and Y
E(Y )

, since E
�

X
E(X)

�
= E

�
Y

E(Y )

�
= 1.
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The coe¢ cient of variation (CV) of a random variable X is de�nded as

CV (X) =

s
E (X � EX)2

(EX)2
:

From Proposition 7 we know that X
E(X)

�L Y
E(Y )

implies that X
E(X)

�cx Y
E(Y )

.

By the de�nition of the convex order we know that

E

�
X

E(X)
� 1
�2
� E

�
Y

E(Y )
� 1
�2
;

since �(x) = (x� 1)2 is a convex function. Therefore, X �L Y implies

CV (X) =

s
E

�
X

E(X)
� 1
�2
�

s
E

�
Y

E(Y )
� 1
�2
= CV (Y ):

Proposition 8 For two non-negative random variablesX and Y with E (X) =

E (Y ),

X =

(
x; with probability v

x0; with probabiity 1� v
;

where x0 < x. And

Y =

(
y; with probability v

y0; with probabiity 1� v
;

where y0 < y. If x0 � y0, then we have X �SSD Y .

Proof of Propostion 8: The distribution function of X, FX(�), is2

FX(�) = (1� v)I[x0;x)(�) + I[x;1)(�); � 2 [0;1):

and the distribution function of Y , FY (�), is

FY (�) = (1� v)I[y0;y)(�) + I[y;1)(�); � 2 [0;1):
2The indicator function IA(�) is de�ned as

IA(�) =

�
1; if � 2 A
0; if � =2 A :
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Since E (X) = E (Y ), x0 � y0 implies x � y. Thus, for z 2 [0; y0), we
have

R z
0
[FX(�)� FY (�)] d� = 0, and for z 2 [y0; x0) we haveZ z

0

[FX(�)� FY (�)] ds = �
Z z

y0
(1� v)ds = �(1� v) (z � y0) � 0:

For z 2 [x0; x) we haveZ z

0

[FX(�)� FY (�)] d� = �
Z x0

y0
(1� v)ds = �(1� v) (x0 � y0) � 0:

For z 2 [x; y) we haveZ z

0

[FX(�)� FY (�)] d� = �(1� v) (x0 � y0) +
Z z

x

vd�

� �(1� v) (x0 � y0) + v (y � x)
= E (Y )� E (X)
= 0:

For z 2 [y;1) we haveZ z

0

[FX(�)� FY (�)] d� = �(1� v) (x0 � y0) + v (y � x)

= E (Y )� E (X)
= 0:

Thus we haveZ z

0

[FX(�)� FY (�)] d� � 0; for 8z 2 [0;1);

which implies
R z
0
FX(�)d� �

R z
0
FY (�)d� for all z 2 [0;1). Therefore, we

have X �SSD Y . �
We use Proposition 8 to investigate the impact of information frictions

and technological changes on the income distribution.

To draw the conclusion on inequality comparison, we need the following

proposition.

Proposition 9 Let X be a non-negative non-degenerate random variable

on [x; �x], and let g(x) and h(x) be non-negative decreasing fuctions of x 2
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[x; �x] such that g(x) > 0 and h(x) > 0 for x < �x. Then we have

g(X) �L h(X);

if g(x)
h(x)

is increasing in x 2 [x; �x).
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