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Abstract

This study investigates the income distribution in a dynamic assignment model

with human-capital accumulation and endogenous firm size. Positive assortative

matching between bosses and workers arises in labor market equilibrium. We solve

the stationary equilibrium of two endogenous functions, the matching rule, and human-

capital distribution; we also decompose two channels affecting the equilibrium match-

ing rule, firm-size effect, and endogenous distribution effect. Finally, we perform a

perturbation analysis of the equilibrium matching rule and the wage function, and

examine the effects of technology improvement on income inequality.
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1 Introduction

Piketty (2014) finds that labor income inequality can be explained by the supply of and
demand for different skills. Song et al. (2019) use administrative data for Social Security
to investigate the sources of the increase in earnings inequality in the US during 1980–
2013. They find that about one-third of the increase is attributable to the increase in the
sorting of higher-paid workers into higher-paying firms.1 Card et al. (2013) obtain similar
results using German data. In the present study, based on Eeckhout and Kircher (2018), we
investigate income inequality through a new channel using matching and sorting between
bosses and workers in a dynamic assignment model.

Combining the matching between the worker quality and firm size, Eeckhout and
Kircher (2018) find a mechanism under which the matching rule and equilibrium wage are
determined simultaneously in the labor market.2 However, Eeckhout and Kircher (2018)
use a static assignment model. The driving force in Eeckhout and Kircher (2018) is the in-
fluence of firm size on the demand for workers, which connects the matching rule and equi-
librium wage.3 We extend the firm-size effect to a dynamic assignment model in which
the boss’ human capital accumulates over time. We view human-capital accumulation as
a new mechanism, under which equilibrium wage and the matching rule are determined
simultaneously, which is different from the mechanism in Eeckhout and Kircher (2018).
We also investigate the situation in which the firm-size channel is shut down. With exoge-
nous firm size, equilibrium wage in the labor market is determined by matching between
bosses and workers with different human capital levels while human-capital accumulation
is affected by equilibrium wage.

In the dynamic model, we investigate income distribution, which is the stationary dis-
tribution of its accumulation process. We show the existence of stationary human-capital
distribution. Given this, the matching equilibrium is the same as in the static model of
Eeckhout and Kircher (2018). Positive assortative matching between bosses and workers

1Song et al. (2019) use the variance of log earnings to measure inequality.
2Eeckhout and Kircher (2018) argue that firm size and matching are the two important cornerstones in

macro, labor and industrial organization. More productive firms tend to hire more workers to produce while
matching is an important factor for determining the firm’s output.

3Without the firm-size channel, the matching rule influences equilibrium wage, while equilibrium wage
does not affect the matching rule in the static assignment model.
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arises in labor market equilibrium. Income distribution is determined by human-capital
distribution and equilibrium wage. The human-capital accumulation process is determined
by a random innate ability shock and parents’ human capital and bequests. Equilibrium
wage in the labor market is affected by matching between bosses and workers with dif-
ferent levels of human capital and by endogenous firm size. Further, the matching rule is
determined by the human-capital distributions of bosses and workers. Thus, in stationary
equilibrium, both the matching rule and human-capital distribution are endogenous and
are determined simultaneously.

We use a perturbation method to decompose two channels affecting the equilibrium
matching rule, the firm size effect and the endogenous distribution effect. We then numer-
ically examine the magnitudes of these effects when the technology level is improved. The
endogenous distribution channel has a much larger effect than firm-size on the matching
rule. We also perform a perturbation analysis of wage function in labor market equilib-
rium. Moreover, to complement Eeckhout and Kircher (2018), we also conduct experi-
ments while turning off the firm-size effect.

We numerically examine the effects of technology improvement on the matching rule,
wage function, and income inequality. In our model, we find that Hicks-neutral tech-
nology improvement influences income inequality. This result contrasts with that of the
static model of Eeckhout and Kircher (2018). In our dynamic model, technical change
affects the distribution of the boss’ human-capital distribution and thus on the matching
rule. Therefore, Hicks-neutral technology improvement affects income distribution in our
model.

In addition, we conduct experiments to examine the effects of technology improve-
ment, the weight of the boss in output production, and the mean of employees’ human
capital on the matching rule, the wage function, and income inequality. These experi-
ments are conducted using static and dynamic models. In the static model, the distribution
of the boss’ human capital is exogenously given, while in the dynamic model, its distri-
bution is dynamically determined. The results of the dynamic model and the static model
differ. This is because in the dynamic model, capital accumulation plays important roles
in matching, labor, and firm size while the static model takes human capital as given
and lowers the interactions among variables. The decomposition results obtained through
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perturbation for matching reveal that the firm-size channel and boss human-capital distri-
bution channel deliver opposite effects in the dynamic model. Overall, the latter channel
dominates the former.

1.1 Literature review

Our study links three streams of literature. The first follows the early work of Becker
(1973) in which a standard frictionless matching model is used to explore sorting between
firms and workers. Considering positive assortative matching (PAM) and negative assor-
tative matching (NAM), Eeckhout and Kircher (2018) find that PAM helps explain why
more productive firms tend to become larger (e.g., Google and Apple) and NAM helps ex-
plain why some large firms hire low-skilled workers (e.g., Walmart). We focus on PAM in
our model. That is, highly productive firms hire high-skilled workers, and less productive
firms hire low-skilled workers.4

Using assignment models, Gabaix and Landier (2008) and Tervio (2008) investigate
income distribution, focusing on high-level CEO pay. Using an assignment model to gen-
erate income distribution, Scheuer and Werning (2017) study the taxation of superstars.
To explain increases in inequality over the last four decades, mainly driven by the increase
in the top income earners, Bao et al. (2022) focus on market power to explain managers’
pay. They find that assortative matching between a firm and managers increases the gap in
productivity across firms and eventually causes higher deadweight loss as productive firms
do not pass productivity gains to the customer.

The second stream of literature is related to the inheritance effect on income inequality
in dynamic models. Becker and Tomes (1979), Loury (1981), and Benhabib et al. (2011)
investigate the inheritance effect on income and wealth inequality. In our study, we assume
there is no credit market and employers cannot borrow but accumulate their human capital
through education investment by using bequests from their parents.5

4Adhvaryu et al. (2020) also found NAM in some garment manufacturers in India because some suppliers
are beholden to certain powerful global buyers and will allocate high-skilled managers to supervise low-
skilled workers to achieve a minimum productivity level on each production line imposed by the buyers. Or,
a more productive/skilled worker is matched with a less productive/skilled worker (e.g., pilots and copilots).
We do not consider NAM in our study.

5For simplification, we assume that employees are hand-to-mouth and do not have human-capital accu-
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The third stream of literature concerns the interaction between human-capital accu-
mulation and matching. Teulings (2005) uses a static assignment model to investigate the
effects of human-capital accumulation on wage distribution. That approach depends on the
comparative statics. Our study, however, uses a dynamic model to investigate the effect
of human-capital accumulation on income distribution. Using a dynamic matching model,
Anderson and Smith (2010) and Anderson (2015) consider human-capital accumulation
in frictionless assignment problems. Human-capital accumulation follows a stochastic
process whose transition function depends on the human capital of the matched pair. Jo-
vanovic (2014) uses a similar human capital accumulation function and considers the im-
perfect signal of the agent’s human capital level. Herkenhoff et al. (2018) and Jarosch
et al. (2021) estimate the parameters of the learning function. Those studies emphasize
on-the-job learning and experiences while our study focuses on the role of schooling in
human-capital accumulation.6 Human-capital accumulation does not explicitly depend
on wage function in these papers. Human-capital accumulation in our study, meanwhile,
depends on education, and education input is determined by the boss’ income, which is
influenced by the wage function in the matching equilibrium. In Lise and Postel-Vinay
(2020), the worker’s human-capital accumulation depends on the worker’ skills and the
firm’s technology in the matching. However, accumulation does not explicitly depend on
wage function in their paper.7

The rest of this paper is organized as follows. We introduce the model in section 2
and present the perturbation results in section 3. Numerical experiments are conducted in
section 4, and section 5 concludes the paper.

2 The model

There is a continuum of measure one of bosses in the economy. The measure of em-
ployees is 10. Bosses and employees match and produce outputs in an assignment frame-

mulation.
6Mincer (1974) considers both the role of schooling and the role of on-the-job learning in the human

capital function.
7While our model is a frictionless matching model, Lise and Postel-Vinay (2020) uses a frictional search

model.

5



work. Heterogeneity exists on both sides, that is, both bosses and employees are heteroge-
neous in their human capital. The human capital of bosses and employees, and the labor
of employees are embedded and combined.8 All bosses and employees live for one pe-
riod. At the end of the period, each gives birth to one child so that the population stays
constant. Bosses leave bequests to their children when they die. Following Becker and
Tomes (1979), we assume that bosses, by leaving bequests, show care for not only their
own consumption but also their children’s income. They have a joy-of-giving bequest mo-
tive, and maximize their utility of constant relative risk aversion (CRRA) preference over
consumption and bequests. Employees are hand-to-mouth. Their salary is only enough to
cover their consumption.9

2.1 The boss problem

The boss in period t with human capital xt chooses his or her consumption cB,t and
bequest bB,t+1 to maximize utility,

max
cB,t,bB,t+1

c1−γ
B,t

1− γ
+ χB

b1−γ
B,t+1

1− γ
,

s.t. cB,t + bB,t+1 = π(xt),

where γ is the reciprocal of the intertemporal elasticity of substitution and χB represents
the intensity of the bequest motive. The boss’ income π(xt) is from the firm’s profit,
which is determined by bargaining and matching in the labor market. The optimal policy
functions of the boss problem are

cB,t =
1

1 + χ
1
γ

B

π(xt), (1)

8For an extensive review of sorting and matching in the labor market, see Eeckhout and Kircher (2018).
9We omit the labor supply channel in the benchmark model. In Appendix B.3 we introduce the em-

ployee’s labor–leisure decision problem into the model.
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and

bB,t+1 =
χ

1
γ

B

1 + χ
1
γ

B

π(xt). (2)

Equation (2) implies that the higher the bequest motive intensity χB the higher the fraction
of income the boss leaves to the child.

Bequests contribute to the formation of the child’s human capital. Human-capital ac-
cumulation follows

xt+1 = x+ κθt+1x
ϵ
tb

η
B,t+1, (3)

where x > 0 is the natural endowment of human capital, κ > 0 is a constant, and θt+1 de-
notes the innate ability of generation t+1. We assume θt+1 follows a uniform distribution,
θt+1 ∼ U

(
0, θ̄
)
. For simplification, we also assume that process {θt}∞t=0 is independent

and identically distributed across generations. Further, ϵ and η denote the elasticity of
the child’s human capital with respect to the parent’s human capital and bequests, with
0 ≤ ϵ, η < 1.

The child inherits human capital from his or her parents through two channels. One
is genetic inheritance xt, and the other is the education channel through bequest inheri-
tance bB,t+1. The household cannot borrow money for the child’s education. Substituting
Equation (2) into Equation (3), we obtain

xt+1 = x+ κ

 χ
1
γ

B

1 + χ
1
γ

B

η

θt+1x
ϵ
tπ(xt)

η. (4)

This equation implies the evolution of the boss’ human-capital distribution. Thus, the boss’
human-capital distribution is endogenous. Human-capital accumulation with an imperfect
credit market can cause income inequality. This is the main difference between our model
and models that assume the boss’ distribution is exogenous.
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2.2 The employee problem

To simplify the model, we assume the employee consumes all of his or her wage
income. Thus, we have

ce,t = Wt(y),

where ce,t is the worker’s consumption in period t, and Wt(y) is the worker’s wage income
in period t. We assume the employee’s human capital is from public education, which is
independent of the employee’s income.10 We assume that y ∈ [y, ȳ] is the human capital
of the employee and is drawn from an exogenous distribution function FY (y). Later, we
will omit the subscript t in Wt(y) since we only focus on the stationary equilibrium of the
economy.

2.3 Matching

The labor market has no friction. The firm determines the quality and quantity of labor
hiring. Following Eeckhout and Kircher (2018) and Grossman et al. (2017), a firm with a
boss of human capital x hires L employees of human capital y to produce output according
to the function,

F (x, y, L) = A
[
βx

α−1
α + (1− β)y

α−1
α

] α
α−1

Lϕ, (5)

where L represents firm size, 0 < ϕ < 1 is the impact coefficient of firm size, A > 0 is
the firm’s productivity, and 0 < β < 1 denotes the weight of bosses in production. α > 0

measures the elasticity of substitution between x and y.11

The boss hires workers from the labor market. The boss chooses not only the type
of worker (i.e., the worker’s human capital level) but also the number of workers, L, to
maximize the firm’ profits,

π(x) = max
y,L

A
[
βx

α−1
α + (1− β)y

α−1
α

] α
α−1

Lϕ −W (y)L. (6)

10If employees also have human-capital accumulation, the economy might have endogenous growth,
which is beyond the scope of this study. To focus on the interaction between equilibrium wage and the
matching rule, we assume that employees do not have human-capital accumulation.

11Our results do not depend on the function form of production. For example, we could adopt function
F (x, y, L) = A [ηxρ + (1− η)(yL)ρ]

γ
ρ , as in Adamopoulos and Restuccia (2014).
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From the firm’s problem, we have the first-order conditions with respect to L and y,

W (y) = Aϕ
[
βx

α−1
α + (1− β)y

α−1
α

] α
α−1

Lϕ−1, (7)

and
W ′(y) = A (1− β)

[
βx

α−1
α + (1− β)y

α−1
α

] 1
α−1

y−
1
αLϕ−1. (8)

Equation (8) shows W ′(y) > 0. This means workers with higher productivity receive a
higher wage.

Parameter ϕ governs the decreasing marginal returns of firm size. Multiplying both
sides of Equation (7) by L, we obtain

WL = ϕF (x, y, L). (9)

Thus, payment to workers is a constant share of the total output of the firm. After we close
the firm-size channel, the property in which the share of payment to workers is constant
might not hold. We will explore this in section 4.

Each boss will choose workers with ability y to maximize the firm’s profits. Following
Eeckhout and Kircher (2018), we assume 0 < α < 1, such that we have positive assortative
matching in labor market equilibrium.12 The matching rule follows

x = m(y), (10)

or
y = m−1(x) ≡ ν(x). (11)

We know m(·) and ν(·) are increasing functions. The matching rule is determined by the
human capital distribution of bosses and that of workers.

Combining Equations (7) and (8), we have

W ′(y)

W (y)
=

1− β

ϕ

y−
1
α

βm(y)
α−1
α + (1− β)y

α−1
α

, (12)

12See Appendix A.1 for proof of the positive assortative matching with 0 < α < 1.
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for y ∈ [y, ȳ], where y denotes the minimum human-capital level of employees. Thus, by
Equation (12), we obtain the wage function,

W (y) = W (y) exp

[
1− β

ϕ

∫ y

y

z−
1
α

βm(z)
α−1
α + (1− β)z

α−1
α

dz

]
, (13)

for y ∈ [y, ȳ].
From Equation (7), we derive labor demand as follows:

L(x) =


Aϕ
[
βx

α−1
α + (1− β)ν(x)

α−1
α

] α
α−1

W (ν(x))


1

1−ϕ

, (14)

which is referred to as the size of the firm with the boss’ human capital x. Firm size
connects the matching rule and equilibrium wage in the labor market. Firm size is the
crucial force of labor market equilibrium in Eeckhout and Kircher (2018).

Equations (6) and (9) imply the boss’ income:

π(x) = (1− ϕ)F (x, y, L). (15)

The boss’ income is used for his or her own consumption and for leaving bequests, which
are used for the child’s education. Education expenditures build up the child’s human
capital. Given the distributions of X and Y , matching in the labor market is a standard
assignment problem without friction. The novelty of our study is the endogenous distribu-
tion of X . The boss’ income is determined by matching equilibrium in the labor market.
This matching result influences the education expenditure of the next generation. Thus,
human-capital distribution is determined by the matching rule.

2.4 Stationary distribution

In our study, human-capital accumulation is the new mechanism, which connects the
matching rule and equilibrium wage in the labor market. The model can generate human-
capital distribution through education investment. Substituting Equation (15) into Equa-
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tion (4), we obtain the human-capital accumulation equation:

xt+1 = x+ θt+1g(xt), (16)

where
g(xt) = ρxϵ

t

[
βx

α−1
α

t + (1− β)ν(xt)
α−1
α

] αη
α−1

L(xt)
ϕη,

with ρ = κ

[
(1−ϕ)Aχ

1
γ
B

1+χ
1
γ
B

]η
.

The function g(x) represents the deterministic part of human-capital accumulation,
which includes genetic and bequest inheritance. From an initial human capital level x0,
Equation (16) leads to the human capital accumulation process {xt}∞t=0. We focus on sta-
tionary equilibrium in this study. Since θt+1 ∼ U

(
0, θ̄
)
, the lower bound of the stationary

distribution of {xt}∞t=0 is x.

Theorem 1 Suppose that there exists x̄ > x, such that x̄ = x+ θ̄g (x̄) and x < x+ θ̄g(x)

for x ∈ [x, x̄]. Assume g(x) is continuously differentiable in (x, x̄) and g′(x) > 0 for

x ∈ (x, x̄). The human-capital accumulation process {xt}∞t=0 is ergodic and hence has a

unique stationary distribution.

Given the matching rule and the wage function, process {xt}∞t=0 has a unique stationary
distribution on [x, x̄]. Let X denote human capital with unique stationary distribution. The
density function of X , fX(x), is determined by

fX(x) =

∫ x̄

h(x)

1

θ̄g(u)
fX(u)du, x ∈ [x, x̄], (17)

where h(x) is defined in Appendix A.3.13 Human-capital distribution has stationary distri-
bution in its accumulation process. We show the existence of stationary human-capital dis-
tribution. Given stationary human-capital distribution, matching equilibrium is the same as
in the static model of Eeckhout and Kircher (2018). Positive assortative matching between
bosses and workers arises in labor market equilibrium.

13See the detailed derivations in Appendix A.3.
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2.5 Stationary equilibrium

We can define stationary equilibrium as follows:

Definition 1 Stationary equilibrium consists of

(i) the solutions to the utility maximization of boss and employee: boss’ bequest bB and

consumption cB, employee’s consumption ce;

(ii) the solutions to production: wage W (y) and firm size L(x) determined by Equations

(13) and (14);

(iii) the density function of the stationary distributions of X , fX(x) given by Equation

(17);

(iv) the matching rule: m(x) determined by the labor market clearing condition,∫ m(y)

x

L(z)fX(z)dz =

∫ y

y

fY (z)dz, (18)

for y ∈ [y, ȳ], where fY (z), the density function of Y , is exogenously given.

Stationary equilibrium is determined by Equations (17) and (18).14 The two endoge-
nous functions, the matching rule and human-capital distribution, are determined by these
equations. Equilibrium wage and the matching rule are determined simultaneously. Thus,
we can investigate the interaction between human-capital accumulation and the matching
mechanism in the labor market. Equation (18) implies that

m′(y) =
fY (y)

L (m(y)) fX (m(y))
> 0, (19)

for y ∈ [y, ȳ].
Without the firm size effect, Equation (18) is replaced by

∫ m(y)

x
fX(z)dz =

∫ y

y
fY (z)dz.

In a static model, the human capital distribution of bosses X is exogenous. Thus, the
matching rule is independent of the wage rate in the labor market. In a dynamic model,

14Even though we have shown that process {xt}∞t=0 has unique stationary distribution, it does not imply
that stationary equilibrium is unique. Different stationary equilibria might have different matching rules and
wage functions.
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human-capital distribution X is determined by Equation (17), which is influenced by the
matching rule in the labor market. Thus, we find that human-capital accumulation is a
new mechanism, under which equilibrium wage and the matching rule are determined
simultaneously, which is different from the mechanism in Eeckhout and Kircher (2018).

Intergenerational transfers influence income inequality through human-capital accu-
mulation. Assortative matching contributes to income inequality in a static model. We
combine these two channels to study income inequality in a dynamic model with endoge-
nous human-capital distribution and investigate the interaction of these two forces. The
sorting equilibrium in the labor market generates the cross sectional income inequality,
and intergerational transmission exaggerates distributional effects through inheritance.

Our benchmark model includes both the inheritance effect and the firm size effect.
On the one hand, we extend the firm size effect of Eeckhout and Kircher (2018) to a
dynamic assignment model in which the boss’ human capital accumulates over time. On
the other hand, we can investigate the interactions between the firm size effect and the
inheritance effect on income inequality in one model. Our parsimonious model focuses
on the interactions between the matching rule and the wage function. We omit frictions
and institutional factors in the labor market. Our model does not take government policy
into account. Sachs et al. (2020) investigate the effect of taxes on the assignment between
tasks and workers.

3 Perturbation

Following Costinot and Vogel (2010), we apply comparative static analysis to the
matching rule and wage function in the equilibrium. Since Equations (17) and (18) are
both nonlinear, it is impossible to analytically examine the effect of A, β, α, and ϕ on
the wage rate and matching rule in the equilibrium. Therefore, we use the perturbation
method to investigate the effects of these parameters.15

Here we present the analysis of the perturbation effect of A and obtain the channels
through which A influences equilibrium. We use hat to represent the derivative and the

15Due to space limitations, we show the perturbation analysis of β, α, and ϕ in Appendix A.4.
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subscript to represent the variable with respect to which we calculate the derivative. For
example, L̂A(x) means the derivative of L(x) with respect to A.16

3.1 Perturbation on the matching rule

Rosen (1981) emphasize sorting and matching as the reason for the superstar phe-
nomenon, which implies that relatively small numbers of people have very high earnings.
Matching plays an important role in income inequality. We can derive the matching rule
from Equation (18). Even though the equation is nonlinear, we can use the perturbation
method to investigate effects of A on the matching rule. Differentiating both sides of
Equation (18) with respect to A, we obtain,

m̂A(y) = −
∫ m(y)

x
L̂A(z)fX(z)dz

L(m(y))fX(m(y))
−
∫ m(y)

x
L(z)f̂(X;A)(z)dz

L(m(y))fX(m(y))
, (20)

for all y ∈ [y, ȳ]. Equation (20) shows two channels through which A affects match-
ing: the firm-size channel and human-capital accumulation channel. The first term on the
right-hand side of Equation (20) represents the firm-size channel, and the second term on
the right-hand side represents the human-capital distribution channel. Moreover, through
Equation (14), we find that wage rate links these channels through the interactions between
firm size and matching.

Human capital distribution is exogenous in the static model. The only channel through
which the wage function can influence the matching rule is firm size. If we further close
the firm-size effect, the matching rule is determined only by the exogenous distributions of
X and Y . In the dynamic model, the wage function influences human-capital distribution
X and thus affects on the matching rule. The matching rule and equilibrium wage are
determined simultaneously in the labor market. The advantage of the perturbation method

16Haanwinckel (2020) decomposes the changes in wage and sorting into contributions from education,
technology, minimum wage, and other shocks, and finds that inequality is mainly driven by the minimum
wage. Bhandari et al (2021) decompose welfare into three components using the perturbation method and
discuss how policy changes can affect aggregate efficiency, redistribution, and insurance. Their method can
be applied to both static and dynamic stochastic economies. We do not implement perturbation on social
welfare here.
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is that different channels are expressed by the linear relationship after we differentiate the
nonlinear equations that determine general equilibrium.

3.2 Perturbation of the wage function

Sattinger (1993) summarizes the mechanisms through which sorting determines earn-
ings distribution in the economy. The wage function is determined in the sorting equilib-
rium. Differentiating both sides of Equation (13) with respect to A, we have

ŴA(y)

W (y)
=

ŴA(y)

W (y)
− 1− β

ϕ

∫ y

y

z−
1
αβm(z)

α−1
α[

βm(z)
α−1
α + (1− β)z

α−1
α

]2 α− 1

α

m̂A(z)

m(z)
dz, (21)

for all y ∈ [y, ȳ]. The first term represents the lower bound wage channel, and the second
term is the matching rule channel. The first term in the perturbation equation does not
change with y while the second term shows that the change in the wage rate at level y
depends on the change in the matching rule at all levels below y. If the matching rule
does not change, then the second term becomes zero, and the wage rates only change
proportionally.

Derivatives and gradients are normally used in comparative statics. We extend the
perturbation analysis to general equilibrium, which consists of two endogenous functions.
We find the derivative of each point in the endogenous function with respect to the change
in the exogenous variable, such as technology level A. Thus, we can find the hetero-
geneous effects of the exogenous variable on workers and bosses with different human
capital levels. These heterogeneous effects are important for research on the labor market
and income inequality.

The perturbation analysis indicates that the matching rule is affected by the wage func-
tion through two channels, firm size and X distribution, while Eeckhout and Kircher
(2018) only emphasize firm size in the static model. Both firm size and human-capital
accumulation have effects on the matching rule and the wage function in equilibrium. We
will implement more numerical exercises to separate these different channels.
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4 Experiments

To examine how inequality changes through interactions between the matching rule
and the wage function in the model, in this section, we implement some numerical ex-
periments. We first assign values to the parameters of our model. Following Eeck-
hout and Kircher (2018), we assume that Y follows a uniform distribution U(1, 10) and
fY (y) = 1/9, and θ follows a uniform distribution U(0, 10) and fΘ(θ) = 0.1. We also
select α = 0.5 and β = 0.3, as in Eeckhout and Kircher (2018). We use ϕ = 0.66, rep-
resenting the employee’s wage accounting for 66% in the firm’s total income. We choose
κ = 1, ϵ = 0.35, and η = 0.4, as in Bénabou (2002). We set x = 1. In the dynamic model,
the distribution of X is endogenous, and thus the upper bound x̄ changes as the parameter
values change.

4.1 Technology improvement

Human-capital accumulation with an imperfect credit market can cause a skewed dis-
tribution of human capital. The household cannot borrow money for the children’s ed-
ucation. The inheritance channel accumulates the effects of luck experienced by each
generation. Thus, inheritance is one factor causing income inequality. This mechanism
is emphasized by Bénabou (2000). Heterogeneous types of bosses and workers and type
complementarity in the production function lead to sorting in labor market equilibrium.
This is another factor causing income inequality. This mechanism is emphasized by Eeck-
hout and Kircher (2018). We combine these two channels to study income inequality. By
investigating the effect of technology improvement on income inequality, we find interest-
ing interactions between these two forces.

We investigate the dynamic and static models for different productivity levels, A =

1, 5, 20. Other parameters are mentioned at the beginning of this section. For the conve-
nience of comparison, we set the support of distribution X in the static model the same as
that in the dynamic model when A = 5; that is, X ~ U(1, 280.77) in the static model.
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(a) The dynamic model

(b) The static model

Figure 1: Changes in matching, firm size, and human-capital distribution for different
values of A.
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Technology improvement influences the matching rule and firm size in the dynamic
model. Technology improvement influences X distribution through bequests as shown by
Equation (3) and Figure 1(a). Figure 1(a) shows that the same level y matches with higher
x = m(y) as A increases. Furthermore, a worker with a higher level of y matches a boss
with much higher human capital, x, as A increases.

We first show that technology improvement does not influence the matching rule and
firm size (see Figure 1(b)) or income distribution (see Figure 3) in the static model. Sup-
pose that firm-size function L(x) does not change when technology level increases from
A to A′. From Equation (18), we know that the matching rule does not change. Equations
(7) and (8) imply that wage function W (y) changes proportionally and L(x) does not
change. From Equation (15), we know that the boss’ income also increases proportionally.
It is demonstrated, therefore, that income inequality does not change with A in the static
model. Technology improvement increases incomes proportionally at all human capital
levels. Hicks-neutral technology improvement does not influence income distribution in
the static model.17 These conclusions are illustrated by numerical examples in Figure 3.

In Eeckhout and Kircher (2018), fY (y) and fX(x) are exogenously given while firm
size is endogenous. In our dynamic model, both firm size and X distribution are en-
dogenous. Thus, technology improvement has different effects in the static and dynamic
models. Technology improvement affects income inequality through the boss’ human-
capital distribution and the matching rule in the dynamic model. From Equation (9), we
know that the income share of workers in each firm is ϕ, when the firm size is endogenous.
This constant share does not change along with human capital level x. Thus, technology
improvement has no effect on income share in the economy. This constant share property
holds both in the dynamic and the static model. Even though technology improvement has
no effect on the income shares of bosses and workers in the economy, it does influence
income inequality within the boss group and that within the worker group.

As shown by Equation (7), employees’ wage W (y) increases with y when technology
A is given. To investigate wage inequality, we calculate the wage ratio of different human

17Minimum wage W (y) increases with technology proportionately in the labor market, even though it is
determined by law in the real world.
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capital levels. From Equation (13), we have

W (y′, A)

W (y, A)
= exp

[
1− β

ϕ

∫ y′

y

z−
1
α

βm(z, A)
α−1
α + (1− β)z

α−1
α

dz

]
,

where y′ ≥ y. The ratio depends on A through matching rule in the labor market equi-
librium. If technology improvement promotes matching, the wage increases with y at a
faster rate. In the static model, the matching rule does not change with the technology
level. Thus, the wage ratio in the static model does not change.

From Figure 1(a) we can see that the matching rule varies with A since the endogenous
human capital distribution of bosses changes in the dynamic model. Thus, the ratio W (y′,A)

W (y,A)

changes with A in the dynamic model. Technology improvement has effects on wage
inequality among workers as shown in Figure 3. From Equation (15), we know that the
income inequality of bosses is identical to that of the output of firms. Figure 3 shows that
the Gini coefficient of the boss’ income decreases with A. This implies that technology
improvement lowers the variance of firms’ output in the whole economy.

Equation (20) holds for all y ∈ [y, ȳ]. Thus, we can draw perturbation curves in Figure
2 to show the perturbation of the matching rule when A changes from 2 to 2.01. The
blue solid line shows the overall positive effects of A on matching through the firm-size
channel and X distribution channel. All workers find bosses with higher human capital
levels when A increases. The total effect can be decomposed into two channels through
which A affects matching: the firm-size channel and X distribution channel (i.e., the boss’
endogenous human-capital accumulation channel). The X distribution channel and firm
size have the opposite effects. The X distribution effects dominate the firm-size effects.
Thus, the matching perturbation changes are positive for all y ∈ [y, ȳ]. Employees, who
have higher human capital y can enjoy much easier matching with high-skilled bosses.
These results confirm the matching rule curves in Figure 1(a).
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Figure 2: Matching perturbation in the dynamic model when A changes from 2 to 2.01.

Since the income shares of bosses and employees are constant, we investigate the Gini
coefficient of the income distribution within each group. Then we plot the Gini coefficient
of the income distribution for the whole economy. Figure 3 shows that the Gini coeffi-
cients of the employee’s wage distribution increase slightly with technology improvement
in the dynamic model but do not change in the static model, as we theoretically explained
above. The Gini coefficients of the boss’ income distribution decrease as A increases. Fig-
ure 3 shows that the boss’ income distribution becomes more equalized because of more
equalized X distribution as shown in Figure 1(a). Inequality among bosses decreases with
technology improvement. The Gini coefficient of the entire economy increases slightly.
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Figure 3: Gini coefficient of the boss’ income, employees’ wage, and the whole popula-
tion’s income for different values of A.

The most striking finding is that technology improvement has effects on income in-
equality in the dynamic model but not in the static model. Autor et al. (1998), Krusell
et al. (2000), and Acemoglu (2003) emphasize that skill-biased technological change can
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explain the increase in earnings inequality in the US since 1970s. Different from those
studies, we use Hicks-neutral technical change in our study. We find that technical change
has effects on the distribution of X and thus on the matching rule; therefore, technical
change influences income inequality in the dynamic model. Our findings are consistent
with the literature. For example, using microdata from 1984 to 1989, Krueger (1993) finds
that workers who use computers for their jobs could have more wage income. Similar
findings are seen in Autor et al. (1998), Caselli (1999), Galor and Moav (2000), and Ace-
moglu (2002). Ales et al. (2015) investigate the implications of technical change for the
structure of wages and employment, using a model that assigns talent to tasks. However,
the effects in that study are from skill-biased technical change.

4.2 Weights of bosses and employees in production

Parameter β in Equation (5) measures the weight of the boss in producing output. The
higher β is, the more important the boss’ role is. To investigate the effects of the boss’
role, we implement experiments with different values of β. In the experiments, we assume
the employee’s human capital distribution Y follows U(1, 10) in both static and dynamic
models. The boss’ human capital distribution X in the static model follows the stationary
distribution of the dynamic model when β = 0.5. In this subsection, we choose A = 1

and other parameters as mentioned at the beginning of this section.
Unlike the change of A, which causes proportional changes in wages and profits in the

static model, the change of β alters the relative importance between bosses and workers in
production. The matching rule varies with β, even in the static model. The change of β
affects the income distribution. Firm size will also change correspondingly. We again use
numerical experiments to investigate the effects of β on labor market equilibrium. Figure
4 includes these results.
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(a) The dynamic model

(b) The static model

Figure 4: Changes in matching, firm size, and human-capital distribution for different
values of β.
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Figure 4(a) shows that a worker with human capital level y matches a boss with a much
higher human capital level at β = 0.7 than at β = 0.3. The change in the matching rule in
the dynamic model reflects two channels: X distribution and firm size. The change in the
matching rule in Figure 4(b) is only through the firm size channel. Since X distribution
does not change in the static model, neither m(y) nor m(ȳ) changes with β. Thus, the
change in the matching rule has larger magnitudes in the middle of Y distribution than the
two ends of y and ȳ.

Figure 4 shows that firm size has a nonmonotone relationship with m(y) at β = 0.3,
and firm size is increasing with m(y) at β = 0.7. This is because, from the firm’s problem,
we have18

L′(m(y)) =
Fy

L
− FxLm

′(y)− FLy

FLLm′(y)
. (22)

Equation (22) shows that firm size could be an increasing or decreasing function of m(y)

depending on the relative forces of complementarity between bosses and employees, and
the span of control complementarity between firm type and the number of workers.

To investigate how wage changes with β, we conduct a perturbation exercise imple-
mented by increasing β from 0.4 to 0.41.19 Figure 5 shows the perturbation results in the
dynamic model. The horizontal red dashed line in Figure 5 represents the lower bound
effect of the wage curve. The wage function W (y), where y ∈ [y, ȳ], is determined by
labor market equilibrium. Thus, the wage rate at the lower bound W (y) is endogenous,
and the lower-bound effect is identical for y ∈ [y, ȳ]. The numerical result shows that this
effect is positive. Figure 5 shows that the β direct channel is negative while the matching
channel is positive. In terms of the trend, the direct channel dominates the matching chan-
nel. Combining these three components, the total effects on the wage rate are positive.
In terms of wage level, the employee earns more as the weight of the boss in production
increases. The advantage of perturbation analysis is that we can use curves to represent
different effects at different levels of y.

18To derive Equation (22), we combine Equations (24) and (26) in Appendix A.1.
19See the perturbation decomposition of Equation (28) in Appendix A.4.2.
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Figure 5: Wage perturbation in the dynamic model.

Figure 6 shows the Gini coefficient of income distributions in the dynamic and static
models for different values of β. The static model adopts the stationary distribution of the
dynamic model when β = 0.5. If β is larger than 0.5, the value of the Gini coefficient
in the dynamic model is larger than that of the static model. In addition, the boss’ Gini
coefficient trends upward in both the dynamic and static models while the employee’s Gini
coefficient trends downward. The whole populations’ Gini lines trend slightly downward
in both the dynamic and static models when β is small while they trend upward when β

becomes large. When β is small, the decrease in the employee’s Gini coefficient dominates
the increase in the boss’ Gini coefficient, and then the whole population’s Gini cofficient
decreases. As β is greater than a certain value, however, the increase in the boss’ Gini
coefficient dominates the decrease in the employee’s Gini coefficient. Therefore, the whole
population’s Gini coefficient increases with β. The trend patterns in the dynamic model
are similar to those in the static model.
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Figure 6: Gini coefficient of the boss’ income, employees’ wage, and the whole popula-
tion’s income for different values of β.

From Equation (9), we know that the income share of workers in the economy is ϕ

when firm size is endogenous. The endogenous firm size implies the constant bargaining
power between bosses and workers. Thus, weight β has no effect on income share in the
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economy. This constant share property holds in the dynamic and static models.20

To examine the effect of β on labor share, we shut down the firm size channel to imple-
ment some exercises. We set firm size L(x) = 10. Figure 7 shows the equilibrium results
of the dynamic and static models with exogenous firm size.21 If firm size is exogenously
given, we can see via Equation (18) that in the static model, the matching rule does not
change with β , since fX(x) and fY (y) are independent of β. In this case β has no effect
on the matching rule. Figure 7(b) confirms this conclusion.

Figure 7(a) shows that X distribution changes with β owing to human-capital accumu-
lation in the dynamic model. Thus, the matching rule also varies with β. With exogenous
firm size, equilibrium wage in the labor market is determined by matching between bosses
and workers with different human capital levels while human-capital accumulation is af-
fected by equilibrium wage. Therefore, we view human-capital accumulation as a new
mechanism, under which equilibrium wage and the matching rule are determined simulta-
neously, which is different from the mechanism in Eeckhout and Kircher (2018).

20Using a sorting model, Gabaix and Landier (2008) find that increases in firm size can explain the rapid
increases in CEO compensation since the 1970s in the US. Eeckhout and Kircher (2018) emphasize the
firm-size channel in an assignment model between firms and workers with experiments of varying β.

21See the derivation details of shutting down the firm size channel in Appendix B.2.
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(a) The dynamic model

(b) The static model

Figure 7: Changes in matching, firm size, and human-capital distribution in the models
with exogenous firm size for different values of β.
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In the matching model without the firm size effect (i.e., the firm size is constant) in-
come share is determined by bargaining power between bosses and workers, and bar-
gaining power is endogenously determined in labor market equilibrium. Analyzing the
employee’s labor income share WL

F (x,y,L)
with different β in the dynamic and static models

with exogenous firm size can help us analyze the inequality between bosses and employ-
ees.

Figure 8: Labor income share comparison.

To specify equilibrium wage in the model with exogenous firm size, we assume em-
ployees have dominant bargaining power over bosses at the lower bound of y.22 Thus,
the boss’ profits are zero at x. However, even under this assumption regarding the lower
end of Y distribution, employees with higher human capital have endogenous bargaining
power. This is shown in Figure 8 for labor income share with a fixed β.

Furthermore, we find that the labor income share curve shifts when β changes. For a
fixed level of y, β and labor share are negatively correlated. The boss weight in the produc-
tion function influences endogenous bargaining power. A large β implies high importance

22We need this assumption to pin down the boundary condition of the wage function, W (y).
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in production and thus the large bargaining power of the boss. Therefore, a boss with large
β takes a large share of output. By contrast, an employee’s labor share declines with β as
he or she becomes relatively less important.

De Loecker et al. (2020) find that markups by firms increased rapidly in the US af-
ter 1980. The increase in both markups and profitability shows that market power has
increased. Eeckhout (2021) suggests that market power could have caused the declining
labor income share in the US. Here, we find that the labor income share is endogenous in
the matching equilibrium of the labor market and could be affected by the relative impor-
tance of the boss in production. Empirical investigations along these lines can be left to
future research.

4.3 Improvement of employee’s ability

We can also use our model to investigate the effects of distribution Y on stationary
distribution X , matching, and income distribution. Assume that u follows a uniform dis-
tribution on (1, 10), and Y = u + d, where d ≥ 0 is a constant. Thus, we have the mean
of Y , µy = 5.5 + d. Similar to skill abundance in Costinot and Vogel (2010), the increase
of d represents the improvement of the employee’s ability. The mean of Y distribution µy

changes.23 In this experiment, we adopt A = 1 and other parameters as mentioned at the
beginning of this section.24

When Y distribution changes,25 output and the boss’ income increase accordingly.
Thus, the boss can leave a larger amount of bequests. A change in Y distribution finally
affects X distribution and thus the matching rule, through the inheritance effect on educa-
tion. Figure 9(a) shows the cumulative distribution function (CDF) of X distribution. It is
shown that X distribution shifts to the right when µy increases.

23We also conduct experiments by varying the dispersion of the employee’s ability distribution while
keeping the mean constant (see Appendix B.1). We find that income inequality increases with the employee’s
skill diversity.

24The boss’ human-capital distribution X in the static model follows the stationary distribution of the
dynamic model when d = 2.

25The employee’s average human capital improves for certain reasons, such as the improvement of public
education or the immigration of foreign workers.
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(a) The dynamic model

(b) The static model

Figure 9: Changes in matching, firm size, and human-capital distribution for different
values of µy.
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Figure 10: Gini coefficient of the boss’ income, employees’ wage, and the whole popula-
tion’s income for different values of µy.

Figure 9 shows that firm size displays similar patterns in the static and dynamic mod-
els. Firm size has an inverted U-shaped relationship with x even though the support of
X distribution changes. It decreases with µy when m(y) (i.e., x) is small. This is be-
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cause low-skilled bosses need to hire more low-skilled employees to substitute quality for
quantity. However, when m(y) is large enough (i.e., x is not small) firm size increases
with µy because high-skilled bosses will hire more high-skilled employees owing to the
complementarity between bosses and employees in output production.

Figure 10 shows that the Gini coefficient of the boss’ income, employees’ wage and the
whole population’s income in both the dynamic and static models trends downward. The
shifts in the support of Y distribution to the right cause the Lorenz curve to be flatter. The
improvement of employees’ human capital promotes equality in not only the employees’
wage distribution but also the boss’ income distribution. Thus, the Gini coefficient of
income distribution in the entire economy decreases.

5 Conclusion

In this study, we extend Eeckhout and Kircher (2018) to a dynamic assignment model
in which human-capital distribution of the boss is determined by the human capital accu-
mulation. We solve the stationary equilibrium of the dynamic model with two endogenous
functions: the matching rule and human-capital distribution. Aside from considering en-
dogenous firm size, as in Eeckhout and Kircher (2018), we also investigate the situation in
which the firm size channel is shut down. With exogenous firm size, the equilibrium wage
in the labor market is determined by matching between bosses and workers with differ-
ent human capital levels, while human-capital accumulation is affected by the equilibrium
wage. Therefore, we view human-capital accumulation as a new mechanism, under which
equilibrium wage and the matching rule are determined simultaneously, which is different
from the mechanism in Eeckhout and Kircher (2018).

We combine human-capital accumulation and assortative matching into a dynamic as-
signment model to study income inequality in a new framework and investigate the in-
teraction of these two forces. We find that technology improvement promotes matching
mainly through human-capital distribution channel, instead of the firm-size channel, which
negatively affects matching. The whole population’s income inequality, mainly driven by
employees’ income inequality, increases with technology improvement in the dynamic
model but not in the static model. The whole population’s income inequality presents a
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U-shaped relationship with the importance of the boss’ role in output production because
of the offsetting effects between the boss income distribution and employees’ income dis-
tribution. Bargaining power between the boss and the employee is also examined after
turning off the firm-size effect by checking the change in labor share. We find that la-
bor share declines as the role of the boss in output production becomes more important.
Keeping the boss role constant, the labor share exhibits a U shape against the employees
human capital. Firm size and employees ability exhibit a non-linear relationship owing
to the complementarity between the boss and the employee in output production. An im-
provement in the employees ability or an increase in the mean of the employee’s human
capital helps lower both the boss and employee’s income inequality.

Regarding policy implications, our findings suggest that while encouraging technology
improvement, which could increase inequality, policy makers should pay more attention to
improving average human capital, which in turn could not only help improve technology
but also reduce inequality.

Each agent lives for one period in our model. Thus, the agent does not need to know
the probability distribution of the matching rule and the wage function in future periods.
Future extension could extend the model into an infinite horizon problem. Thus, we would
have to solve a functional rational expectation equilibrium since both the matching rule and
the wage rate are functions. This could pose a difficult problem when using the traditional
computation methods. However, a new method of machine learning, as in Azinovic et
al. (2022), could solve this problem. This framework could also be used to measure the
effects of immigrants or government interventions, such as education subsidies, on income
inequality. We leave this to future work.
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Appendix A Derivations and proofs

A.1 Derivation of positive assortative matching

The firm’s profit-maximization problem is

π(x) = max
y,L

F (x, y, L)−W (y)L.

The first-order conditions of the firm’s profit-maximization problem are

W (y) = FL(x, y, L), (23)

and
W ′(y)L = Fy(x, y, L). (24)

The second-order necessary condition for maximization requires the Hessian matrix H
to be negative definite, where

H =

(
∂2π
∂L2

∂2π
∂L∂y

∂2π
∂y∂L

∂2π
∂y2

)
.

We know that
∂2π

∂L2
= FLL,

∂2π

∂L∂y
=

∂2π

∂y∂L
= FLy −W ′(y),

and
∂2π

∂y2
= Fyy −W ′′(y)L.

Since 0 < ϕ < 1, we have FLL < 0. The Hessian matrix H is negative definite. Thus,
the determinant |H| is positive. We have

|H| =
∂2π

∂L2

∂2π

∂y2
−
(

∂2π

∂L∂y

)2

= FLL(Fyy −W ′′(y)L)− (FLy −W ′(y))2 ≥ 0. (25)
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Plugging x = m(y) into Equation (23), we then differentiate W (y) with respect to y

and obtain
W ′(y) = FxLm

′(y) + FLy + FLLL
′(m(y))m′(y). (26)

Plugging x = m(y) into Equation (24), we then differentiate both sides with respect to y

and obtain

Fyy −W ′′(y)L = −Fxym
′(y) + (W ′(y)− FLy)L

′(m(y))m′(y). (27)

Combining Equations (25) and (27), we have

|H| = FLL[−Fxym
′(y) + (W ′(y)− FLy)L

′(m(y))m′(y)]− (W ′(y)− FLy)
2

= −FLLFxym
′(y) + [FLLL

′(m(y))m′(y)− (W ′(y)− FLy)](W
′(y)− FLy)

= [FxL(FLy −W ′(y))− FLLFxy]m
′(y),

where the third line uses W ′(y)− FLy = FxLm
′(y) + FLLL

′(m(y))m′(y) from Equation
(26).

From Equation (24), we have W ′(y) = Fy

L
. Thus, we have

|H| =
[
FxL

(
FLy −

Fy

L

)
− FLLFxy

]
m′(y).

Using the production function F (x, y, L) = A
[
βx

α−1
α + (1− β)y

α−1
α

] α
α−1

Lϕ, we
have

|H| =
(
1

α
− 1

)
A2ϕ(1−ϕ)β(1−β)[βx

α−1
α +(1−β)y

α−1
α ]

2
α−1x− 1

αy−
1
αL2ϕ−2m′(y) ≥ 0.

Since 0 < α < 1, 0 < β < 1, and 0 < ϕ < 1, we have m′(y) ≥ 0. Thus, we have positive
assortative matching in labor market equilibrium.
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A.2 Ergodicity of the human-capital accumulation process

Definition 2 A Markovian process {st}∞t=0 is monotone if for every increasing function

r(·), E[r(st+1)|st] is an increasing function of st.

Lemma 1 The human-capital accumulation process {xt}∞t=0 is monotone.

Proof of Lemma 1: Suppose r(·) is an increasing function. For xt ≤ x̃t, we have

E[r(xt+1)|xt] =

∫ θ̄

0

r(x+ θ′g(xt))
1

θ̄
dθ′

≤
∫ θ̄

0

r(x+ θ′g(x̃t))
1

θ̄
dθ′

= E[r(xt+1)|x̃t].

Thus, process {xt}∞t=0 is monotone. ■

Definition 3 A Markov process {st}∞t=0 has the Feller property if for any bounded contin-

uous function r(·), E[r(st+1)|st] is a bounded continuous function of st.

Lemma 2 The human-capital accumulation process {xt}∞t=0 has the Feller property.

Proof of Lemma 2: Suppose r(·) is a bounded continuous function. For sequence
{xn

t }∞n=1 such that limn→∞ xn
t = xt, we have

lim
n→∞

E[r(xt+1)|xn
t ] = lim

n→∞

∫ θ̄

0

r(x+ θ′g(xn
t ))

1

θ̄
dθ′

=

∫ θ̄

0

lim
n→∞

r(x+ θ′g(xn
t ))

1

θ̄
dθ′

=

∫ θ̄

0

r(x+ θ′g(xt))
1

θ̄
dθ′

= E[r(xt+1)|xt],

where the second line uses the bounded convergence theorem. Thus, process {xt}∞t=0 has
the Feller property. ■
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Definition 4 A Markov process {st}∞t=0 on [a, b] satisfies the "mixing" condition if there

exists s∗ ∈ [a, b], ε > 0, and N ≥ 1 such that PN(a, [s∗, b]) ≥ ε and PN(b, [a, s∗]) ≥ ε.26

Lemma 3 The stochastic process {xt}∞t=0 satisfies the "mixing" condition.

Proof of Lemma 3: Let

x∗ = x+
θ̄

2
g (x) .

If θt+1 = 0, then xt+1 = x for xt = x̄. There exists 0 < δ < θ̄ such that xt+1 < x∗ for
xt = x̄ and θt+1 ∈ [0, δ]. Thus, we have

Pr(x̄, [x, x∗]) ≥ Pr(θt+1 ∈ [0, δ]) = δ/θ̄,

and

Pr(x, [x∗, x̄]) ≥ Pr

(
θt+1 ∈ [

θ̄

2
, θ̄]

)
=

1

2
.

Pick N = 1 and let
ε = min

{
1

2
, δ/θ̄

}
.

We have Pr(x, [x∗, x̄]) ≥ ε and Pr(x̄, [x, x∗]) ≥ ε. Thus, process {xt}∞t=0 satisfies the
"mixing" condition. ■

Proof of Theorem 1: Lemma 1 shows that process {xt}∞t=0 is monotone. From Lem-
mas 2 and 3, we know that process {xt}∞t=0 has the Feller property and satisfies the "mix-
ing" condition. Based on Theorem 12.12 in Stokey and Lucas (1989), process {xt}∞t=0 is
ergodic. ■

A.3 Stationary distribution as a fixed point

We have x̄ = x+ θ̄g(x̄). Let x̃ = x+ θ̄g(x). We have x ≤ x̃ ≤ x̄, since g′(x) > 0 for
x ∈ (x, x̄). From the implicit function theorem, we know that there exists a differentiable
function p(x) such that

x = x+ θ̄g(p(x)),

26Pn(·, ·) denotes the n-step transition probability of {st}∞t=0.
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for x ∈ [x̃, x̄]. We know that x ≤ p(x) ≤ x̄ since x̃ = x+ θ̄g(x) and x̄ = x+ θ̄g(x̄). Let

h(x) =

{
x , if x ∈ [x, x̃]

p(x) , if x ∈ [x̃, x̄]

We use fXt(x) to denote the probability density function of xt. From xt+1 = x +

θt+1g(xt), we have

Pr (xt+1 ≤ x) =

∫ x̄

x

Pr (x+ θt+1g(u) ≤ x) fXt(u)du

=

∫ x̄

x

Pr

(
θt+1 ≤

x− x

g(u)

)
fXt(u)du

=

∫ h(x)

x

fXt(u)du+

∫ x̄

h(x)

1

θ̄

x− x

g(u)
fXt(u)du,

since θt+1 follows a uniform distribution on [0, θ̄].
For x ∈ [x, x̃], the cumulative distribution function of xt+1, FXt+1(x), is

FXt+1(x) =

∫ x̄

x

1

θ̄

x− x

g(u)
fXt(u)du.

Thus, we have

fXt+1(x) =

∫ x̄

x

1

θ̄g(u)
fXt(u)du.

For x ∈ [x̃, x̄], the cumulative distribution function FXt+1(x) is

FXt+1(x) =

∫ p(x)

x

fXt(u)du+

∫ x̄

p(x)

1

θ̄

x− x

g(u)
fXt(u)du.

Thus, we obtain

fXt+1(x) = fXt(p(x))p
′(x)− 1

θ̄

x− x

g(p(x))
fXt(p(x))p

′(x) +

∫ x̄

p(x)

1

θ̄

1

g(u)
fXt(u)du

=

∫ x̄

p(x)

1

θ̄g(u)
fXt(u)du,

39



since x = x+ θ̄g(p(x)) for x ∈ [x̃, x̄].
Thus, for all x ∈ [x, x̄], we have

fXt+1(x) =

∫ x̄

h(x)

1

θ̄g(u)
fXt(u)du.

The probability density function of stationary distribution X , fX(x), satisfies

fX(x) =

∫ x̄

h(x)

1

θ̄g(u)
fX(u)du,

for all x ∈ [x, x̄].

A.4 Perturbation

A.4.1 Technology improvement

Differentiating both sides of Equation (13) with respect to A, we have

ŴA(y) = W (y)

ŴA(y)

W (y)
− 1− β

ϕ

∫ y

y

z−
1
αβm(z)

α−1
α[

βm(z)
α−1
α + (1− β)z

α−1
α

]2 α− 1

α

m̂A(z)

m(z)
dz

 .

Thus, we have Equation (21).

A.4.2 Changing the weight of bosses

Differentiating both sides of Equation (18) with respect to β, we obtain

m̂β(y) = −
∫ m(y)

x
L̂β(z)fX(z)dz

L(m(y))fX(m(y))
−
∫ m(y)

x
L(z)f̂(X;β)(z)dz

L(m(y))fX(m(y))
.

Differentiating Equation (13), we obtain the employee’s wage W (y) perturbation with
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respect to β, as below:

Ŵβ(y)

W (y)
=

Ŵβ(y)

W (y)
−
∫ y

y

1− β

ϕ

z−
1
αβm(z)

α−1
α[

βm(z)
α−1
α + (1− β)z

α−1
α

]2 α− 1

α

m̂β(z)

m(z)
dz

−
∫ y

y

1

ϕ

z−
1
α

βm(z)
α−1
α + (1− β)z

α−1
α

+
1− β

ϕ

z−
1
α

[
m(z)

α−1
α − z

α−1
α

]
[
βm(z)

α−1
α + (1− β)z

α−1
α

]2
 dz,

(28)

where the first term is the lower-bound wage channel effect, the second term is the match-
ing channel effect, and the last one is the direct channel effect of β.

A.4.3 Changing the substitution coefficient of bosses and employees

Differentiating both sides of Equation (18) with respect to α, we obtain

m̂α(y) = −
∫ m(y)

x
L̂α(z)fX(z)dz

L(m(y))fX(m(y))
−
∫ m(y)

x
L(z)f̂(X;α)(z)dz

L(m(y))fX(m(y))
.

Differentiating Equation (13), we obtain the employee’s wage W (y) perturbation with
respect to α, as below:

Ŵα(y)

W (y)
=

Ŵα(y)

W (y)
− 1− β

ϕ

∫ y

y

z−
1
αβm(z)

α−1
α[

βm(z)
α−1
α + (1− β)z

α−1
α

]2 m̂α(z)

m(z)
dz

+
1− β

ϕ

∫ y

y

z−
1
α


ln z

[
βm(z)

α−1
α + (1− β)z

α−1
α

]
− βm(z)

α−1
α lnm(z)[

βm(z)
α−1
α + (1− β)z

α−1
α

]2
− (1− β) z

α−1
α ln z[

βm(z)
α−1
α + (1− β)z

α−1
α

]2
 1

α2
dz,

where the first term is the lower-bound wage channel effect, the second term is the match-
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ing channel effect, and the last one is the direct channel of α.

A.4.4 Changing the impact coefficient of firm size

Differentiating both sides of Equation (18) with respect to ϕ, we obtain

m̂ϕ(y) = −
∫ m(y)

x
L̂ϕ(z)fX(z)dz

L(m(y))fX(m(y))
−
∫ m(y)

x
L(z)f̂(X;ϕ)(z)dz

L(m(y))fX(m(y))
.

Differentiating Equation (13), we obtain the employee’s wage W (y) perturbation with
respect to ϕ, as below:

Ŵϕ(y)

W (y)
=

Ŵϕ(y)

W (y)
− 1− β

ϕ

∫ y

y

z−
1
αβm(z)

α−1
α[

βm(z)
α−1
α + (1− β)z

α−1
α

]2 α− 1

α

m̂ϕ(z)

m(z)
dz

− 1− β

ϕ

∫ y

y

1

ϕ

z−
1
α

βm(z)
α−1
α + (1− β)z

α−1
α

dz,

where the first term is the lower-bound wage channel effect, the second term is the match-
ing channel effect, and the last one is the direct channel of ϕ.
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Appendix B Model extensions

B.1 Change in employees’ ability dispersion

In this subsection, we present the changes in the results of the dynamic and static
models when the dispersion of employee’s ability distribution varies. The change of n
shows the ability dispersion. Assume that Y follows a uniform distribution on (1+n, 10−
n), where n ≥ 0 is a constant. When we increase n, the mean of Y distribution, µy = 5.5,
does not change while the dispersion of Y distribution decreases. In this experiment, we
use the same parameters as in subsection 4.3.27

By extending the analysis of Costinot and Vogel (2010) to a dynamic assignment model
while keeping the mean-preserving spread of Y , we find that a change in n leads to a
change in stationary distribution X , since human-capital accumulation depends on the
matching rule and the wage function in the labor market. The numerical experiments show
that firm size has a nonmonotone relationship of x when the dispersion of distribution Y

is low. Firm size is decreasing in x when the dispersion of distribution Y is high. Figure
11 shows different cases of n = 0, 2, 4. The X distributions in the dynamic model respond
slightly to the change.

27The boss’ human-capital distribution X in the static model below follows the stationary distribution of
the dynamic model when n = 2.
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(a) The dynamic model

(b) The static model

Figure 11: Changes in matching, firm size, and human-capital distribution for different
values of n.
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Figure 12: Gini coefficient of the boss’ income, employees’ wage and the whole popula-
tion’s income for different values of n.

Dispersion magnitude is negatively related to n. Thus, inequality decreasing with n

means that income inequality increases with the employees skill diversity. As shown in
Figure 12, the boss’ income Gini in the dynamic model is slightly different from the static
model while employees are the same in both the dynamic and static models. However,
all trends in Figure 12 indicate that income inequality increases with employees’ skill
diversity.
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B.2 Model with exogenous firm size

In this model, we assume firm size L is exogenous and L = 10. The boss’ income is

π(x) = max
y

A
[
βx

α−1
α + (1− β)y

α−1
α

] α
α−1

Lϕ −W (y)L.

Thus, wage is determined by

W ′(y) = A (1− β)
[
βx

α−1
α + (1− β)y

α−1
α

] 1
α−1

y−
1
αLϕ−1.

Therefore, the wage function is

W (y) = W (y) + A (1− β)Lϕ−1

∫ y

y

[
βm(z)

α−1
α + (1− β)z

α−1
α

] 1
α−1

z−
1
αdz.

The boss’ income is

π(x) = A
[
βx

α−1
α + (1− β)ν(x)

α−1
α

] α
α−1

Lϕ −W (ν(x))L.

Then, we obtain the human capital accumulation equation,

xt+1 = θt+1g(xt),

where g(xt) = ρxϵ
t

{
A
[
βx

α−1
α

t + (1− β)ν(xt)
α−1
α

] α
α−1

Lϕ −W (ν(xt))L

}η

, with ρ =

κ

(
χ
1/γ
B

1+χ
1/γ
B

)η

. The labor market clearing condition is

L

∫ m(y)

x

fX(z)dz =

∫ y

y

fY (z)dz.

B.3 Model with endogenous labor supply

In this subsection, we extend our benchmark model to a model with employee labor
supply, and we only show the differences here. The employee chooses his or her consump-
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tion ce,t and labor ℓt to maximize his or her utility, subject to income:

max
ce,t,lt

c1−γ
e,t

1− γ
− χe

ℓ1+δ
t

1 + δ
,

s.t.
ce,t = Wt(y)ℓt,

where 1
δ

denotes the Frisch elasticity of labor supply. Solving the employee’s problem we
have

ce,t = χ
− 1

δ+γ
e Wt(y)

δ+1
δ+γ ,

and
ℓt = χ

− 1
δ+γ

e Wt(y)
1−γ
δ+γ .

The labor market clearing condition now becomes∫ m(y)

x

L(z)fX(z)dz =

∫ y

y

ℓ(z)fY (z)dz. (29)

Differentiating Equation (29) with respect to y, we obtain

m′(y) =
ℓ(y)fY (y)

L(m(y))fX(m(y))
,

and the matching rule now is

m(y) = x+

∫ y

y

ℓ(z)fY (z)

L(m(z))fX(m(z))
dz.

We implement numerical experiments of different β in the model with endogenous
labor supply. We adopt γ = 2, δ = 0.2 and χe = 1; the other parameters are the same as in
subsection 4.2. Figure 13 shows the results. Comparing Figure 13 and 4, we find that the
results with endogenous labor supply are consistent with the results with exogenous labor
supply.
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(a) The dynamic model

(b) The static model

Figure 13: Changes in matching, firm size, labor supply, employee’s wage, and boss’
income, and boss’ human-capital distribution for different values of β.
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Appendix C Numerical methods

C.1 Matching and market clearing

The two important parts for solving the model are the boss’ human capital density
function fX(x) and the matching. In subsection C.2, we obtain fX(x), and in this subsec-
tion, we obtain the matching.

Based on Equation (19) , we obtain the matching rule m(y):

m(y) = x+

∫ y

y

fY (z)

L (m(z)) fX (m(z))
dz. (30)

To solve the matching, we follow the following steps:
Step 1: Set the x grids and y distribution In the model, we assume y follows an

exogenous uniform distribution from 1 to 10 and initialize x to range from 1 to 5000. We
set the number of the x and y grids to be nb and ne; thus, x and y are nb × 1 and ne × 1

vectors, {x1, x2, · · · , xnb
}T and {y1, y2, · · · , yne}T , respectively. Since the support of x is

endogenously determined, in step 1, we use 5000 as the initial value of the upper limit of
x. When we calculate the x stationary distribution in subsection C.2, we will get the new
upper limit of x.

Step 2: Initialize the matching We set the initial matching m(y) ranges from 1 to
xnb

/20. If the upper limit of the initial value of m(y) is much larger than the upper limit
of x, it might make the next matching m(y) increase by too much, making it unable to
converge. Thus, we suggest that the upper limit of the initial value should be less than the
upper limit of x.

Step 3: Obtain W (y), L(m(y)), π(m(y)), g(m(y)), and fX(x) according to
the model Following the model in this paper, we need to fix W (y) first and then use
m(y) and y to obtain these variables and functions. Thus, in the code, we set WL and
WH to represent the initial minimum and maximum value of W (y1), respectively, and
the initial value of W (y1) = WL+WH

2
. Then, we obtain W (y), L(m(y)), π(m(y)), and

g(m(y)).
Step 4: Obtain the matching m(y) Following subsection C.2, we obtain fX(m(y))
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and then use interpolation to get fX(x). Since the elements of m(y) might be larger than
x̄, the extrapolation might lead to some element of fX(m(y)) ≤ 0; then, we need to set the
ones whose values are nonpositive and equal to the minimum positive values of fX(m(y)).
Following the method in Eeckhout and Kircher (2018), multiply fY (y) by 100—the popu-
lation ratio of employees to bosses. According to the Occupational Employment and Wage
Statistics provided by the US Bureau of Labor Statistics, managers, first-line supervisors,
superintendents, and administrators accounted for about 10.4% of the workforce in 2018;
thus, we assume the population ratio of employees to bosses is 10. Then, we obtain the
matching m(y) following Equation (30). The element of m(y) might be larger than x̄,
especially when the elements of fX(m(y)) approximate to 0. Thus, we set the elements
whose values are larger than x̄ equal to x̄. Then, we obtain the final matching in this step.

Step 5: Check if x is exhausted Following Eeckhout and Kircher (2018), we set
diff_my_xmax = max(m(y))−x̄

x̄
. When the absolute value of diff_my_xmax is larger than

10−3, it means the boss’ human capital x is not exhausted. Thus, if diff_my_xmax is larger
than 10−3, we need to decrease the wage to increase L(m(y)); thus, we set WHnew =

W (y1) and W (y1)
new = WL+WHnew

2
. Similar to this, when diff_my_xmax is less than

−10−3, we set WLnew = W (y1) and W (y1)
new = WLnew+WH

2
.

Step 6: Check if matching converges In step 4, we obtain the matching m(y)1, but
it might not converge. Thus, we run the code again with this matching m(y)1 to get a
new matching, m(y)2, which might not be the same as m(y)1. We therefore need to check
if m(y)2 is the same as m(y)1. First, we define a vector equal to the difference between
m(y)2 and m(y)1. Second, we define a variable dm equal to the norm of the vector, divided
by the square root of ne; ne is the number of elements in m(y). If dm is less than 10−2, we
consider that the matching converges. Repeat steps 3–6 until the matching converges.

Step 7: Check if the market clears We set a vector equal to the difference between
the RHS and LHS of Equation (18). This vector is ne × 1. Then, we define a variable
Labor_market_clear equal to the norm of this vector, divided by the square root of ne.
When Labor_market_clear is less than 10−3, the market is clear. If the LHS is larger than
the RHS, it means that labor demand is larger than the labor supply; thus, we decrease
the wage. Let WHnew = W (y1) and W (y1)

new = WL+WHnew

2
. Otherwise, let WLnew =

W (y1) and W (y1)
new = WLnew+WH

2
. Repeat steps 2–7 until the market clears.
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Dynamic model with exogenous firm size The part that is different from the bench-
mark model is the lowest wage W (y1) setting. In step 3, we set the smallest value of
W (y1), which satisfies π(m(y)) > 0 as the initial value. Assume W̃ makes π(m(y)) = 0;
then, we set the initial value of W (y1) equal to W̃ − 10−5. The other steps are the same as
in the benchmark model.

Static model with endogenous firm size Since the x distribution is exogenously
given, we use one of the x stationary distributions of the benchmark model as the x distri-
bution. We adjust W (y1) to make the market consume all x and y. This means we make
the minimum and maximum of m(y) equal to those of x. Since we use interpolation to
obtain matching, the minimum of m(y) is always equal to the minimum of x. We just in-
crease or decrease W (y) to make the maximum of m(y) equal to the maximum of x when
the former is smaller or larger than the latter. Other steps are the same as in the benchmark
model.

Static model with exogenous firm size We use the same method as in the dynamic
model with exogenous firm size. The differences from the dynamic model with exogenous
firm size are as follows: First, we use that of the x stationary distributions of the latter as
the x distribution in the former. Second, we use that of the stationary matching rules of
the latter as the initial matching rule in the former.

The experiment is implemented using different β, A, µy, and σy to repeat steps 1–7.
Then, we plot the figures with these results.

C.2 Density function fX(x)

To calculate the density function numerically, we follow the steps below:
Step 1: Calculate x̄ After obtaining m(y) and g(m(y)) in step 3 of section C.1, based

on the equation x̄ = x+ θ̄g(x̄), we can get the new x̄. First, we use interpolation between
m(y) and g(m(y)) to obtain g(·). Second, the x lower limit x1 = x is fixed, and therefore
we assume xu = 10x̄ and xl = x, where x̄ = 5000 in the first run of the code because
we initialize the maximum of x = 5000. Let b(x) = θ̄g(x) + x− x; we need to calculate
b(xl) and b(xu). If b(xl)b(xu) < 0, let x̄1 = xl+xu

2
; otherwise, there must not exist a

new x̄, the initial wage support might not be right, and we need to adjust the initial wage
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support and rerun the code. If the absolute value of b(x̄1) ≤ 10−3, then the new x̄ = x̄1.
Third, if the absolute value of b(x̄1) > 10−3, we need to check the sign of b(x̄1)b(xl) and
b(x̄1)b(xu). If b(x̄1)b(xl) < 0, let x̄2 = xl+x̄1

2
and xu = x̄1. Otherwise, there must be

b(x̄1)b(xu) < 0; let x̄2 = xu+x̄1

2
and xl = x̄1. If the absolute value of b(x̄2) ≤ 10−3, then

the new x̄ = x̄2. Fourth, repeat the third step until the absolute value of b(x̄j) ≤ 10−3,
where j is the number of times the third step is repeated.

Step 2: Calculate h(x) Given the new x̄, the x support should be [x, x̄]; then, use the
discretized grids of x, (x1, x2, ..., xnb

)T to represent x. First, according to x̃ = x+ θ̄g(x),
we obtain x̃. Second, when xi < x̃, h(xi) = x; otherwise, h(xi) = g−1(xi−x

θ̄
) ≤ x̄.

Step 4: Obtain g(u) In steps 2 and 3, we get h(x) and the new x̄; then, the support
of u is [h(xi), x̄]. For different xi, we get different g(u) with g(·) in step 1. In the first
run of the code, we assume the initial x distribution fX(x)0 is a uniform distribution, and
the density is {1, 1, · · · , 1︸ ︷︷ ︸

nb

}/nb. Use interpolation between x and fX(x) to get fX(·); then,

we can get fX(u). Then, according to Equation (17), we use the trapezoidal rule to obtain
fX(xi) and normalize fX(xi) for all xi to get the final fX(x)1.

Step 5: Obtain the stationary distribution fX(x) From steps 1–4, we obtain fX(x)1,
but it might not be stationary distribution. Thus, we rerun the code with fX(x)1 as the ini-
tial distribution to get fX(x)2. Then, define a vector equal to fX(x)2 − fX(x)1 and divide
the norm of this vector by the root of nb—the number of elements in this vector. Finally,
use this result as dis_fx. If dis_fx is less than < 10−3, the distribution is stationary. Other-
wise, run the code with fX(x)2, fX(x)3, · · · until dis_fx is less than 10−3.

C.3 Numerical methods for the perturbation in section 3

In the main text, we use hat to represent the derivative and the subscript to represent
the variable with respect to which we do the derivative. For example, L̂A(x) means the
differentiation of L(x) with respect to A. In the code, L̂A(x) = LA2(x)− LA1(x).

The following steps are employed to accomplish perturbation of the matching rule.
Step 1: Follow section C.1 and solve the model with A1 and A2 In this step, we

just run the model and solve it following section C.1 with a different A.
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Step 2: Obtain the perturbations of the related functions by subtracting the cor-
responding results In step 1, we obtain all functions with two results (e.g., LA2(x) and
LA1(x)). Then, we can obtain the perturbation of L(x), L̂A(x) = LA2(x)− LA1(x).

Step 3: Calculate the matching perturbation Based on Equation (20) in the paper,

m̂A(y) = −
∫ m(y)

x
L̂A(z)fX(z)dz

L(m(y))fX(m(y))
−
∫ m(y)

x
L(z)f̂(X;A)(z)dz

L(m(y))fX(m(y))
.

The LHS can be easily obtained using step 1 and step 2; RHS should use integration.
Here, we use the trapezoidal rule. Since the integral domain is from x to m(y), the first
value of this integration is 0. Consequently, when we use the trapezoidal rule, we need to
set initial = 0.
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