Online Appendix of "Existence of the

 Stationary Equilibrium in an
Incomplete-market Model with Endogenous
 Labor Supply"

Shenghao Zhu
University of International Business and Economics, China

December 28, 2019

This online appendix contains all proofs of the paper "Existence of the stationary equilibrium in an incomplete-market model with endogenous labor supply."

1 Appendix A

1.1 Proof of Proposition 1

Proof: 1) $J(y, q)$ is bounded since $u(c, h)$ is bounded.
2) Suppose that $0<y_{1}<y_{2} . c^{s}\left(y_{1}, q\right)$ and $h^{s}\left(y_{1}, q\right)$ are the optimal choices
for the intratemporal problem. We have

$$
\begin{aligned}
J\left(y_{1}, q\right) & =u\left[c^{s}\left(y_{1}, q\right), h^{s}\left(y_{1}, q\right)\right] \\
& <u\left[c^{s}\left(y_{1}, q\right)+y_{2}-y_{1}, h^{s}\left(y_{1}, q\right)\right] \\
& \leq J\left(y_{2}, q\right) .
\end{aligned}
$$

Thus $J(y, q)$ is strictly increasing in y.
For any $y_{1}, y_{2}>0$ and $y_{1} \neq y_{2}$, we have $\left(c^{s}\left(y_{1}, q\right), h^{s}\left(y_{1}, q\right)\right) \neq\left(c^{s}\left(y_{2}, q\right), h^{s}\left(y_{2}, q\right)\right)$, since $u(c, h)$ is strictly increasing in c and h. Since $u(c, h)$ is strictly concave in c and h, we have

$$
\begin{aligned}
& J\left[\lambda y_{1}+(1-\lambda) y_{2}, q\right] \\
\geq & u\left[\lambda c^{s}\left(y_{1}, q\right)+(1-\lambda) c^{s}\left(y_{2}, q\right), \lambda h^{s}\left(y_{1}, q\right)+(1-\lambda) h^{s}\left(y_{2}, q\right)\right] \\
> & \lambda u\left[c^{s}\left(y_{1}, q\right), h^{s}\left(y_{1}, q\right)\right]+(1-\lambda) u\left[c^{s}\left(y_{2}, q\right), h^{s}\left(y_{2}, q\right)\right] \\
= & \lambda J\left(y_{1}, q\right)+(1-\lambda) J\left(y_{2}, q\right),
\end{aligned}
$$

for $\lambda \in(0,1)$. Thus, $J(y, q)$ is strictly concave in y.
3) By Theorem 3.6 (Theorem of the Maximum) posited by Stokey and Lucas (1989), $c^{s}(y, q)$ and $h^{s}(y, q)$ are continuous in $y \in(0, \infty)$.

If Case ii) of Assumption 2 holds, we have $h^{s}(y, q)=0$ and $c^{s}(y, q)=y$. Thus, $c^{s}(y, q)$ and $h^{s}(y, q)$ are increasing in y.

Next I will concentrate on Case i) of Assumption 2. In this case, we have $h^{s}(y, q)>0$ and

$$
\frac{u_{2}\left[c^{s}(y, q), h^{s}(y, q)\right]}{u_{1}\left[c^{s}(y, q), h^{s}(y, q)\right]} \geq q,
$$

for $y \in(0, \infty)$. For $0<y_{1}<y_{2}, h^{s}\left(y_{1}, q\right)=1$ implies that $h^{s}\left(y_{2}, q\right)=1$. Suppose that $h^{s}\left(y_{2}, q\right)<1$. Then $c^{s}\left(y_{1}, q\right)<c^{s}\left(y_{2}, q\right) . u_{21} u_{1}-u_{11} u_{2}>0$ implies that $\frac{\partial\left(\frac{u_{2}}{u_{1}}\right)}{\partial c}>0$. Additionally, $u_{12} u_{2}-u_{22} u_{1}>0$ implies that $\frac{\partial\left(\frac{u_{2}}{u_{1}}\right)}{\partial h}<0$. Therefore, we have

$$
\frac{u_{2}\left[c^{s}\left(y_{1}, q\right), h^{s}\left(y_{1}, q\right)\right]}{u_{1}\left[c^{s}\left(y_{1}, q\right), h^{s}\left(y_{1}, q\right)\right]}<\frac{u_{2}\left[c^{s}\left(y_{2}, q\right), h^{s}\left(y_{2}, q\right)\right]}{u_{1}\left[c^{s}\left(y_{2}, q\right), h^{s}\left(y_{2}, q\right)\right]}=q .
$$

We have a contradiction. Thus we have $h^{s}\left(y_{2}, q\right)=1 . c^{s}\left(y_{2}, q\right)=y_{2}-q>y_{1}-q=$ $c^{s}\left(y_{1}, q\right)$.

Suppose that $h^{s}(y, q) \in(0,1)$ for some $y>0$. We have

$$
u_{2}\left[c^{s}(y, q), h^{s}(y, q)\right]=u_{1}\left[c^{s}(y, q), h^{s}(y, q)\right] q,
$$

and

$$
c^{s}(y, q)+h^{s}(y, q) q=y .
$$

Thus, using the Implicit Function Theorem, we have

$$
\frac{\partial c^{s}(y, q)}{\partial y}=\frac{\left(u_{12} u_{2}-u_{22} u_{1}\right) u_{1}}{\left(u_{12} u_{2}-u_{22} u_{1}\right) u_{1}+\left(u_{21} u_{1}-u_{11} u_{2}\right) u_{2}}>0,
$$

and

$$
\frac{\partial h^{s}(y, q)}{\partial y}=\frac{\left(u_{21} u_{1}-u_{11} u_{2}\right) u_{1}}{\left(u_{12} u_{2}-u_{22} u_{1}\right) u_{1}+\left(u_{21} u_{1}-u_{11} u_{2}\right) u_{2}}>0,
$$

since $u_{21} u_{1}-u_{11} u_{2}>0$ and $u_{12} u_{2}-u_{22} u_{1}>0$. Both $c^{s}(y, q)$ and $h^{s}(y, q)$ are increasing in y.
4) To prove that $J(y, q)$ is differentiable at $y_{0} \in(0, \infty)$, note that Assumption 2 implies that $c_{0}>0$, which in turn means that $y_{0}-h^{s}\left(y_{0}, e\right) q>0$. Thus, for any y belonging to a neighborhood D of $y_{0}, h^{s}\left(y_{0}, q\right)$ is still feasible. Define $H(y, q)$ on D as $H(y, q)=u\left[y-h^{s}\left(y_{0}, q\right) q, h^{s}\left(y_{0}, e\right)\right]$. Thus, $H(y, q)$ is concave and differentiable in y. Since $h^{s}\left(y_{0}, q\right)$ is still feasible for all $y \in D$, it follows that

$$
H(y, q) \leq \max _{h \in[0,1]} u(y-h q, h)=J(y, q), \forall y \in D,
$$

with equality at y_{0}. Now any subgradient p of $J(y, q)$ at y_{0} must satisfy

$$
p\left(y-y_{0}\right) \geq J(y, q)-J\left(y_{0}, q\right) \geq H(y, q)-H\left(y_{0}, q\right), \forall y \in D,
$$

where the first inequality uses the definition of a subgradient and the second uses the fact that $H(y, q) \leq J(y, q)$, with equality at y_{0}. Since $H(y, q)$ is differentiable at y_{0}, p is unique. Following Theorem 25.1 posited by Rockafellar
(1970), any concave function with a unique subgradient at an interior point y_{0} is differentiable at y_{0}. Thus, $J(y, q)$ is differentiable at y_{0}. Furthermore, we know that $J_{1}\left(y_{0}, q\right)=H_{1}\left(y_{0}, q\right)=u_{1}\left[c^{s}\left(y_{0}, q\right), h^{s}\left(y_{0}, q\right)\right]$ for $y_{0} \in(0, \infty)$. From part 3) of this proposition, $c^{s}\left(y_{0}, q\right)$ and $h^{s}\left(y_{0}, q\right)$ are continuous in $y_{0} \in(0, \infty)$. Thus, $J_{1}\left(y_{0}, q\right)$ is continuous in $y_{0} \in(0, \infty)$.

1.2 Proof of Proposition 2

Proof: 1) This is a direct result from Theorems 9.6, 9.7, and 9.8 from the work of Stokey and Lucas (1989).
2) To prove that $V(a, e)$ is differentiable at $a_{0} \in(0, \infty)$, note that Assumption 2 implies that $y_{0}>0$, which in turn means that $R a_{0}+e w-a^{\prime}\left(a_{0}, e\right)>0$. Thus, for any a belonging to a neighborhood D of $a_{0}, a^{\prime}\left(a_{0}, e\right)$ is still feasible. Define $W(a, e)$ on D as $W(a, e)=J\left[R a+e w-a^{\prime}\left(a_{0}, e\right), e w\right]+\beta E\left[V\left(a^{\prime}\left(a_{0}, e\right), e^{\prime}\right) \mid e\right]$. Thus, $W(a, e)$ is concave and differentiable in a. Since $a^{\prime}\left(a_{0}, e\right)$ is still feasible for all $a \in D$, it follows that

$$
W(a, e) \leq \max _{a^{\prime} \in \Gamma(a, e)}\left\{J\left(R a+e w-a^{\prime}, e w\right)+\beta E\left[V\left(a^{\prime}, e^{\prime}\right) \mid e\right]\right\}=V(a, e), \forall a \in D,
$$

with equality at a_{0}. Now any subgradient p of $V(a, e)$ at a_{0} must satisfy

$$
p\left(a-a_{0}\right) \geq V(a, e)-V\left(a_{0}, e\right) \geq W(a, e)-W\left(a_{0}, e\right), \forall a \in D,
$$

where the first inequality uses the definition of a subgradient and the second uses the fact that $W(a, e) \leq V(a, e)$, with equality at a_{0}. Since $W(a, e)$ is differentiable at a_{0}, p is unique. By Theorem 25.1 posited by Rockafellar (1970), any concave function with a unique subgradient at an interior point a_{0} is differentiable at a_{0}. Thus, $V(a, e)$ is differentiable at a_{0}. Furthermore, we know that $V_{1}\left(a_{0}, e\right)=W_{1}\left(a_{0}, e\right)=R J_{1}\left[y\left(a_{0}, e\right), e w\right]$ for $a_{0} \in(0, \infty)$. From part 1) of this proposition we know that $V(a, e)$ is continuous and concave in $a \in[0, \infty)$.

Thus, using Proposition 6.7.4 in Florenzano and Le Van (2001), we know that $\lim _{a \rightarrow 0} V_{1}(a, e)=V_{1}^{+}(0, e)$. Therefore, $V(a, e)$ is continuously differentiable in $a \in[0, \infty)$. We already know that $V_{1}(a, e)=R J_{1}[y(a, e), e w]$ for $a \in(0, \infty)$. By the Theorem of the Maximum, $y(a, e)$ is continuous in $a \in[0, \infty)$. We also know from part 4) of Proposition 1 that $J_{1}(y, e w)$ is continuous in $y \in(0, \infty)$. Thus we have $V_{1}(a, e)=R J_{1}[y(a, e), e w]$ for all $a \in[0, \infty)$.
3) By the Theorem of the Maximum, $a^{\prime}(a, e)$ is continuous in a.

The first-order condition (FOC) of the household's problem is

$$
\begin{equation*}
J_{1}[y(a, e), e w] \geq \beta E\left[V_{1}\left(a^{\prime}(a, e), e^{\prime}\right) \mid e\right], \text { with equality if } a^{\prime}(a, e)>0 . \tag{A.1}
\end{equation*}
$$

Combining FOC (A.1) and $V_{1}(a, e)=R J_{1}[y(a, e), e w]$ for all $a \in[0, \infty)$, we have the Euler equation of the household's problem,

$$
\begin{equation*}
V_{1}(a, e) \geq \beta R E\left[V_{1}\left(a^{\prime}(a, e), e^{\prime}\right) \mid e\right], \text { with equality if } a^{\prime}(a, e)>0 \tag{A.2}
\end{equation*}
$$

For fixed $e \in E$ and any $a_{2}>a_{1} \geq 0$, we know that either $a^{\prime}\left(a_{1}, e\right)=0$ or $a^{\prime}\left(a_{1}, e\right)>0$. If $a^{\prime}\left(a_{1}, e\right)=0$, then $a^{\prime}\left(a_{2}, e\right) \geq a^{\prime}\left(a_{1}, e\right)$. If $a^{\prime}\left(a_{1}, e\right)>0$, then we have

$$
V_{1}\left(a_{1}, e\right)=\beta R E\left[V_{1}\left(a^{\prime}\left(a_{1}, e\right), e^{\prime}\right) \mid e\right] .
$$

Suppose that $a^{\prime}\left(a_{2}, e\right)<a^{\prime}\left(a_{1}, e\right)$. Then, from the Euler equation (A.2), we have

$$
V_{1}\left(a_{2}, e\right) \geq \beta R E\left[V_{1}\left(a^{\prime}\left(a_{2}, e\right), e^{\prime}\right) \mid e\right]>\beta R E\left[V_{1}\left(a^{\prime}\left(a_{1}, e\right), e^{\prime}\right) \mid e\right]=V_{1}\left(a_{1}, e\right),
$$

which contradicts the fact that $V(a, e)$ is strictly concave in a. Thus we have $a^{\prime}\left(a_{2}, e\right) \geq a^{\prime}\left(a_{1}, e\right)$.
4) By the Theorem of the Maximum, $y(a, e)$ is continuous in a. From part 2) of this proposition we know that $V_{1}(a, e)=R J_{1}[y(a, e), e w]$ for all $a \in[0, \infty)$. Thus, $y(a, e)$ is strictly increasing in a.

1.3 Proof of Proposition 3

Proof: 1) By part 4) of Proposition 2, $y(a, e)$ is continuous and strictly increasing in a. Since $c^{s}(y, q)$ and $h^{s}(y, q)$ are continuous and increasing in y by part 3) of Proposition 1, $c(a, e)$ and $h(a, e)$ are continuous and increasing in a.

For $e \in E, h(a, e)$ is increasing in a and $h(a, e) \in(0,1]$. Thus, we have $\lim _{a \rightarrow \infty} h(a, e)=\bar{h}(e) \in[0,1]$. We know that $\lim _{a \rightarrow \infty} V_{1}(a, e)=0$, since $V(a, e)$ is bounded. Thus,

$$
\begin{equation*}
\lim _{a \rightarrow \infty} u_{1}[c(a, e), h(a, e)]=0, \tag{A.3}
\end{equation*}
$$

since $V_{1}(a, e)=R u_{1}[c(a, e), h(a, e)]$. Suppose that there exists $\left\{a_{m}\right\}_{m=1}^{\infty}$ and $B>$ 0 such tha tlim $\lim _{m \rightarrow \infty} a_{m}=\infty$ and $c\left(a_{m}, e\right) \leq B$ for all $m \geq 1$. Then we have

$$
u_{1}[c(a, e), h(a, e)] \geq u_{1}[B, h(a, e)] .
$$

Thus,

$$
\lim _{a \rightarrow \infty} u_{1}[c(a, e), h(a, e)] \geq \lim _{a \rightarrow \infty} u_{1}[B, h(a, e)]=u_{1}[B, \bar{h}(e)]>0
$$

which contradicts Equation (A.3). Therefore, we have $\lim _{a \rightarrow \infty} c(a, e)=\infty$.
2) Suppose that $h(a, e)<1$ for all $a>0$. Then we have

$$
u_{2}[c(a, e), h(a, e)]=u_{1}[c(a, e), h(a, e)] e w .
$$

From Equation (A.3) we have

$$
\begin{equation*}
\lim _{a \rightarrow \infty} u_{2}[c(a, e), h(a, e)]=0 . \tag{A.4}
\end{equation*}
$$

If Case A) of Assumption 5 holds, we can pick $\hat{a}>0$ such that $u_{2}[c(\hat{a}, e), 1]>0$. We know that $c(a, e) \geq c(\hat{a}, e)$ for $a>\hat{a}$. Thus, $u_{12} \geq 0$ implies that

$$
u_{2}[c(a, e), h(a, e)] \geq u_{2}[c(\hat{a}, e), h(a, e)]>u_{2}[c(\hat{a}, e), 1]>0,
$$

which contradicts Equation (A.4). Thus there exists $\tilde{a}>0$ such that $h(\tilde{a}, e)=1$. From part 1) of this proposition we know that $h(a, e)$ is increasing in a. Thus we have $h(a, e)=1$ for $a \geq \tilde{a}$.

Since E is a finite set, we have $h(a, e)=1$ for sufficiently large a and all $e \in E$.

1.4 Proof of Theorem 1

Proof: Let $d_{t}=(\beta R)^{t} V_{1}\left(a_{t}, e_{t}\right)$. The Euler equation (4) implies that

$$
d_{t} \geq E_{t}\left(d_{t+1}\right)
$$

Thus, $\left\{d_{t}\right\}_{t=0}^{\infty}$ is a nonnegative supermartingale. We know that $V_{1}\left(a_{t}, e_{t}\right)$ is finite since $V_{1}\left(a_{t}, e_{t}\right)=R u_{1}\left(c_{t}, h_{t}\right)$. Since $d_{0}=V_{1}\left(a_{0}, e_{0}\right)$, it follows from the Supermartingale Convergence Theorem that there exists a random variable d_{∞} with $E\left(d_{\infty}\right) \leq V_{1}\left(a_{0}, e_{0}\right)$ such that $\lim _{t \rightarrow \infty} d_{t}=d_{\infty}$ almost surely. Thus we have $\lim _{t \rightarrow \infty}(\beta R)^{t} V_{1}\left(a_{t}, e_{t}\right)=d_{\infty}$ almost surely. Since $\beta R>1$, we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} V_{1}\left(a_{t}, e_{t}\right)=0 \text { a.s. } \tag{A.5}
\end{equation*}
$$

Let $D=\left\{\omega: \liminf _{t \rightarrow \infty} a_{t}(\omega)<\infty\right\}$. For each $\omega \in D$, there exists a bounded subsequence $\left\{a_{t_{k}}(\omega)\right\}_{k=1}^{\infty}$ and $B(\omega)>0$ such that $a_{t_{k}}(\omega)<B(\omega)$ for all $k \geq 0$. Suppose that the probability of D is positive, i.e. $\operatorname{Pr}(D)>0$. From Equation (A.5), we can pick a path $\omega \in D$ such that $V_{1}\left(a_{t_{k}}(\omega), e_{t_{k}}(\omega)\right) \rightarrow 0$ as $k \rightarrow \infty$. For convenience I omit ω in the following derivation. Thus we have

$$
V_{1}\left(a_{t_{k}}, e_{t_{k}}\right) \geq V_{1}\left(B, e_{t_{k}}\right) \geq \min _{e \in E}\left\{V_{1}(B, e)\right\}>0, \forall k \geq 0 .
$$

We have a contradiction. Thus, $\lim _{t \rightarrow \infty} a_{t}=\infty$ almost surely.

1.5 Proof of Lemma 1

Proof: The Euler equation (4) implies that

$$
V_{1}\left(a_{t}, e_{t}\right) \geq E_{t} V_{1}\left(a_{t+1}, e_{t+1}\right)
$$

Thus, $\left\{V_{1}\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ is a nonnegative supermartingale. We know that $V_{1}\left(a_{t}, e_{t}\right)$ is finite since $V_{1}\left(a_{t}, e_{t}\right)=R u_{1}\left(c_{t}, h_{t}\right)$. Since $d_{0}=V_{1}\left(a_{0}, e_{0}\right)$, it follows from the Supermartingale Convergence Theorem that there exists a random variable d_{∞} with $E\left(d_{\infty}\right) \leq V_{1}\left(a_{0}, e_{0}\right)$ such that

$$
\lim _{t \rightarrow \infty} V_{1}\left(a_{t}, e_{t}\right)=d_{\infty} \text { a.s. }
$$

Moreover, d_{∞} is finite almost surely, since $E\left(d_{\infty}\right) \leq V_{1}\left(a_{0}, e_{0}\right)$.

1.6 Proof of Proposition 4

Proof: If Case ii) of Assumption 2 holds, $g(\lambda, e)=0$ for $\lambda \in(0, \infty)$. Thus, it is decreasing in λ.

If Case i) of Assumption 2 holds, we have

$$
g(\lambda, e)=\min \{v(\lambda, e), 1\}, \lambda \in(0, \infty),
$$

for $e \in E$. Therefore, we know that $g(\lambda, e)$ is decreasing in $\lambda \in(0, \infty)$ since $\frac{\partial v(\lambda, e)}{\partial \lambda}<0$ for $\lambda \in(0, \infty)$.

1.7 Proof of Lemma 2

Proof: If Case ii) of Assumption 2 holds, we have $\bar{\lambda}=0$. We know that $\xi(\phi, e)=$ $\left(U^{\prime}\right)^{-1}(\phi)$ and $g(\phi, e)=0$ for $\phi>0$ and all $e \in E$. Therefore, we have

$$
\begin{aligned}
\chi\left(\phi, e^{1}\right)= & \left(U^{\prime}\right)^{-1}(\phi)-e^{1} w \\
> & \left(U^{\prime}\right)^{-1}(\phi)-e^{2} w=\chi\left(\phi, e^{2}\right) \\
& \cdots \\
> & \left(U^{\prime}\right)^{-1}(\phi)-e^{n} w=\chi\left(\phi, e^{n}\right),
\end{aligned}
$$

for $\phi>0$. Thus we have $\chi\left(\phi, e^{1}\right)>\chi\left(\phi, e^{2}\right)>\cdots>\chi\left(\phi, e^{n}\right)$ for $\phi>0$.

If Case i) of Assumption 2 holds, we have $u_{11} u_{22}-u_{21} u_{12}>0$. Thus we use the Implicit Function Theorem to find continuous functions $\xi(\lambda, e)$ and $v(\lambda, e)$ on $(0, \infty) \times\left(0,2 e^{n}\right)$ such that

$$
u_{1}[\kappa(\lambda, e), v(\lambda, e)]=\lambda,
$$

and

$$
u_{2}[\kappa(\lambda, e), v(\lambda, e)]=\lambda e w,
$$

for $\lambda>0$ and $e \in\left(0,2 e^{n}\right)$. From the Implicit Function Theorem we also know that

$$
\frac{\partial \kappa(\lambda, e)}{\partial e}=-\frac{u_{22}}{u_{11} u_{22}-u_{21} u_{12}} \lambda w>0
$$

and

$$
\frac{\partial v(\lambda, e)}{\partial e}=\frac{u_{11}}{u_{11} u_{22}-u_{21} u_{12}} \lambda w<0
$$

for $(\lambda, e) \in(0, \infty) \times\left(0,2 e^{n}\right)$.
For $\lambda>0$, let

$$
e_{1}(\lambda)=\left\{\begin{array}{cc}
0, & \text { if } \Phi_{1}(\lambda) \text { is empty } \\
\sup \Phi_{1}(\lambda), & \text { if } \Phi_{1}(\lambda) \text { is not empty }
\end{array},\right.
$$

where $\Phi_{1}(\lambda)=\left\{e \in\left(0,2 e^{n}\right): v(\lambda, e) \geq 1\right\}$. Since $\frac{\partial v(\lambda, e)}{\partial e}<0$ for $e \in\left(0,2 e^{n}\right)$, we define

$$
h=g(\lambda, e)=\left\{\begin{array}{cc}
1, & e \in\left(0, e_{1}(\lambda)\right] \\
v(\lambda, e), & e \in\left(e_{1}(\lambda), 2 e^{n}\right)
\end{array},\right.
$$

and

$$
c=\xi(\lambda, e)=\left\{\begin{array}{lc}
\vartheta^{-1}(\lambda), & e \in\left(0, e_{1}(\lambda)\right] \\
\kappa(\lambda, e), & e \in\left(e_{1}(\lambda), 2 e^{n}\right)
\end{array},\right.
$$

where $\vartheta(c)=u_{1}(c, 1)$. This way we extend the domain of $\xi(\lambda, e)$ and $g(\lambda, e)$ to $(0, \infty) \times\left(0,2 e^{n}\right)$, which contains $(0, \infty) \times E$. We know that $g(\lambda, e)>0$ for all $(\lambda, e) \in(0, \infty) \times\left(0,2 e^{n}\right)$.

For $\phi \in(0, \bar{\lambda}]$, we have

$$
g(\phi, e)=1, \forall e \in E,
$$

and

$$
\chi(\phi, e)=\vartheta^{-1}(\phi), \forall e \in E .
$$

For $\phi>\bar{\lambda}$, we have $0<g(\phi, e)=v(\phi, e)<1$ and $\xi(\phi, e)=\kappa(\phi, e)$ for all $e \in\left(e_{1}(\phi), 2 e^{n}\right)$. Therefore, we have

$$
\begin{aligned}
\frac{\partial \chi(\phi, e)}{\partial e} & =\frac{\partial \kappa(\phi, e)}{\partial e}+\frac{\partial v(\phi, e)}{\partial e} e w-(1-h) w \\
& =-\frac{u_{12} u_{1}-u_{11} u_{2}}{u_{11} u_{22}-u_{21} u_{12}} \frac{\phi w}{u_{1}}-[1-g(\phi, e)] w<0,
\end{aligned}
$$

for $e \in\left(e_{1}(\phi), 2 e^{n}\right)$. Suppose that $e_{1}(\phi) \geq e^{n}$. Then we have

$$
g(\phi, e)=1, \forall e \in E \text {, }
$$

since $E \subset\left(0, e_{1}(\phi)\right]$. This is impossible since, by the definition of $\bar{\lambda}$ (9), we know that, for $\phi>\bar{\lambda}$, there exists $e \in E$ such that $g(\phi, e)<1$. Thererfore, we have $e_{1}(\phi)<e^{n}$ for $\phi>\bar{\lambda}$.

For $\phi>\bar{\lambda}$, if there exists $1 \leq i \leq n-1$ such that $e_{1}(\phi) \in\left[e^{i}, e^{i+1}\right)$, then we have

$$
\chi\left(\phi, e_{1}(\phi)\right)>\chi\left(\phi, e^{i+1}\right)>\cdots>\chi\left(\phi, e^{n}\right),
$$

since $\left(e_{1}(\phi), e^{n}\right] \subset\left(e_{1}(\phi), 2 e^{n}\right)$ and $\frac{\partial \chi(\phi, e)}{\partial e}<0$ for $e \in\left(e_{1}(\phi), 2 e^{n}\right)$. Thus we have

$$
\chi\left(\phi, e^{1}\right)=\cdots=\chi\left(\phi, e^{i}\right)=\chi\left(\phi, e_{1}(\phi)\right)>\chi\left(\phi, e^{i+1}\right)>\cdots>\chi\left(\phi, e^{n}\right),
$$

since $\chi\left(\phi, e^{1}\right)=\cdots=\chi\left(\phi, e^{i}\right)=\chi\left(\phi, e_{1}(\phi)\right)=\vartheta^{-1}(\phi)$. If $e_{1}(\phi)<e^{1}$, then we have

$$
\chi\left(\phi, e^{1}\right)>\chi\left(\phi, e^{2}\right)>\cdots>\chi\left(\phi, e^{n}\right),
$$

since $\left[e^{1}, e^{n}\right] \subset\left(e_{1}(\phi), 2 e^{n}\right)$.

1.8 Proof of Lemma 3

Proof: Denote

$$
\bar{P}=\min _{\left(e, e^{\prime}\right) \in E \times E}\left\{\pi\left(e^{\prime} \mid e\right)\right\} .
$$

Choose T such that $\beta^{T}<\frac{1}{4}$. Let

$$
\varepsilon_{\phi}=\min \left\{(\bar{P})^{T}, \frac{\beta^{2}}{1-\beta} \frac{\chi\left(\phi, e^{1}\right)-\chi\left(\phi, e^{n}\right)}{4}\right\} .
$$

Note that $\varepsilon_{\phi}>0$. We denote

$$
\bar{\alpha}=\beta \chi\left(\phi, e_{t}\right)+\frac{\beta^{2}}{1-\beta} \frac{\chi\left(\phi, e^{1}\right)+\chi\left(\phi, e^{n}\right)}{2} .
$$

Then we show this lemma in two cases.
Case (i) $\alpha \leq \bar{\alpha}$. Pick event $D_{1}=\left\{e_{t}, e_{t+j-1}=e^{1}\right.$ for $\left.j=2,3, \cdots, T+1\right\}$. On D_{1} we have

$$
\begin{aligned}
& \sum_{j=1}^{\infty} \chi\left(\phi, e_{t+j-1}\right) \beta^{j} \\
= & \beta \chi\left(\phi, e_{t}\right)+\sum_{j=2}^{\infty} \chi\left(\phi, e^{1}\right) \beta^{j}-\sum_{j=T+2}^{\infty}\left[\chi\left(\phi, e^{1}\right)-\chi\left(\phi, e_{t+j-1}\right)\right] \beta^{j} \\
\geq & \beta \chi\left(\phi, e_{t}\right)+\sum_{j=2}^{\infty} \chi\left(\phi, e^{1}\right) \beta^{j}-\sum_{j=T+2}^{\infty}\left[\chi\left(\phi, e^{1}\right)-\chi\left(\phi, e^{n}\right)\right] \beta^{j} \\
= & \beta \chi\left(\phi, e_{t}\right)+\frac{\beta^{2}}{1-\beta} \chi\left(\phi, e^{1}\right)-\frac{\beta^{T+2}}{1-\beta}\left[\chi\left(\phi, e^{1}\right)-\chi\left(\phi, e^{n}\right)\right] \\
= & \beta \chi\left(\phi, e_{t}\right)+\frac{\beta^{2}}{1-\beta} \frac{\chi\left(\phi, e^{1}\right)+\chi\left(\phi, e^{n}\right)}{2}+\frac{\beta^{2}}{1-\beta} \frac{\chi\left(\phi, e^{1}\right)-\chi\left(\phi, e^{n}\right)}{2} \\
& -\frac{2 \beta^{T+2}}{1-\beta} \frac{\chi\left(\phi, e^{1}\right)-\chi\left(\phi, e^{n}\right)}{2} \\
= & \beta \chi\left(\phi, e_{t}\right)+\frac{\beta^{2}}{1-\beta} \frac{\chi\left(\phi, e^{1}\right)+\chi\left(\phi, e^{n}\right)}{2}+\left(1-2 \beta^{T}\right) 2 \frac{\beta^{2}}{1-\beta} \frac{\chi\left(\phi, e^{1}\right)-\chi\left(\phi, e^{n}\right)}{4} \\
\geq & \bar{\alpha}+\left(1-2 \beta^{T}\right) 2 \varepsilon_{\phi} \\
> & \bar{\alpha}+\varepsilon_{\phi} \\
\geq & \alpha+\varepsilon_{\phi} .
\end{aligned}
$$

We know $\operatorname{Pr}\left(D_{1} \mid e_{t}\right)=\operatorname{Pr}\left(e_{t+j-1}=e^{1}\right.$ for $\left.j=2,3, \cdots, T+1 \mid e_{t}\right) \geq(\bar{P})^{T} \geq \varepsilon_{\phi}$. Thus, $\operatorname{Pr}\left(\sum_{j=1}^{\infty} \chi\left(\phi, e_{t+j-1}\right) \beta^{j}>\alpha+\varepsilon_{\phi} \mid e_{t}\right) \geq \operatorname{Pr}\left(D_{1} \mid e_{t}\right) \geq \varepsilon_{\phi}$. We have

$$
\begin{aligned}
& \operatorname{Pr}\left(\alpha \leq \sum_{j=1}^{\infty} \chi\left(\phi, e_{t+j-1}\right) \beta^{j} \leq \alpha+\varepsilon_{\phi} \mid e_{t}\right) \\
\leq & \operatorname{Pr}\left(\sum_{j=1}^{\infty} \chi\left(\phi, e_{t+j-1}\right) \beta^{j} \leq \alpha+\varepsilon_{\phi} \mid e_{t}\right) \\
= & 1-\operatorname{Pr}\left(\sum_{j=1}^{\infty} \chi\left(\phi, e_{t+j-1}\right) \beta^{j}>\alpha+\varepsilon_{\phi} \mid e_{t}\right) \\
\leq & 1-\varepsilon_{\phi} .
\end{aligned}
$$

Case (ii) $\alpha>\bar{\alpha}$. Pick event $D_{2}=\left\{e_{t}, e_{t+j-1}=e^{n}\right.$ for $\left.j=2,3, \cdots, T+1\right\}$. On D_{2} we have

$$
\begin{aligned}
& \sum_{j=1}^{\infty} \chi\left(\phi, e_{t+j-1}\right) \beta^{j} \\
= & \beta \chi\left(\phi, e_{t}\right)+\sum_{j=2}^{\infty} \chi\left(\phi, e^{n}\right) \beta^{j}+\sum_{j=T+2}^{\infty}\left[\chi\left(\phi, e_{t+j-1}\right)-\chi\left(\phi, e^{n}\right)\right] \beta^{j} \\
\leq & \beta \chi\left(\phi, e_{t}\right)+\sum_{j=2}^{\infty} \chi\left(\phi, e^{n}\right) \beta^{j}+\sum_{j=T+2}^{\infty}\left[\chi\left(\phi, e^{1}\right)-\chi\left(\phi, e^{n}\right)\right] \beta^{j} \\
= & \beta \chi\left(\phi, e_{t}\right)+\frac{\beta^{2}}{1-\beta} \chi\left(\phi, e^{n}\right)+\frac{\beta^{2} \beta^{T}}{1-\beta}\left[\chi\left(\phi, e^{1}\right)-\chi\left(\phi, e^{n}\right)\right] \\
< & \beta \chi\left(\phi, e_{t}\right)+\frac{\beta^{2}}{1-\beta} \chi\left(\phi, e^{n}\right)+\frac{\beta^{2}}{1-\beta} \frac{\chi\left(\phi, e^{1}\right)-\chi\left(\phi, e^{n}\right)}{2} \\
= & \beta \chi\left(\phi, e_{t}\right)+\frac{\beta^{2}}{1-\beta} \frac{\chi\left(\phi, e^{1}\right)+\chi\left(\phi, e^{n}\right)}{2} \\
= & \bar{\alpha} \\
< & \alpha .
\end{aligned}
$$

We know $\operatorname{Pr}\left(D_{2} \mid e_{t}\right)=\operatorname{Pr}\left(e_{t+j-1}=e^{n}\right.$ for $\left.j=2,3, \cdots, T+1 \mid e_{t}\right) \geq(\bar{P})^{T} \geq \varepsilon_{\phi}$.

Thus, $\operatorname{Pr}\left(\sum_{j=1}^{\infty} \chi\left(\phi, e_{t+j-1}\right) \beta^{j}<\alpha \mid e_{t}\right) \geq \operatorname{Pr}\left(D_{2} \mid e_{t}\right) \geq \varepsilon_{\phi}$. We have

$$
\begin{aligned}
& \operatorname{Pr}\left(\alpha \leq \sum_{j=1}^{\infty} \chi\left(\phi, e_{t+j-1}\right) \beta^{j} \leq \alpha+\varepsilon_{\phi} \mid e_{t}\right) \\
\leq & \operatorname{Pr}\left(\sum_{j=1}^{\infty} \chi\left(\phi, e_{t+j-1}\right) \beta^{j} \geq \alpha \mid e_{t}\right) \\
= & 1-\operatorname{Pr}\left(\sum_{j=1}^{\infty} \chi\left(\phi, e_{t+j-1}\right) \beta^{j}<\alpha \mid e_{t}\right) \\
\leq & 1-\varepsilon_{\phi} .
\end{aligned}
$$

1.9 Proof of Theorem 2

Proof: From Lemma 1 we know that $\lim _{t \rightarrow \infty} V_{1}\left(a_{t}, e_{t}\right)$ exists and is finite almost surely for $\beta R=1$. Suppose that $\operatorname{Pr}\left(\lim _{t \rightarrow \infty} V_{1}\left(a_{t}, e_{t}\right) \leq R \bar{\lambda}\right)<1$. Thus,

$$
\operatorname{Pr}\left(\lim _{t \rightarrow \infty} u_{1}\left(c_{t}, h_{t}\right) \leq \bar{\lambda}\right)<1 .
$$

Then there exists $\psi>\bar{\lambda}$ such that we have $\operatorname{Pr}\left(\lim _{t \rightarrow \infty} u_{1}\left(c_{t}, h_{t}\right) \in[\psi, \psi+\delta]\right)>0$ for any $\delta>0$.

For any $\varepsilon>0$, let $\eta=\frac{1-\beta}{2 \beta} \varepsilon$. We may choose ϕ and $\delta, \bar{\lambda}<\phi<\psi<\phi+\delta$, such that $\operatorname{Pr}\left(\lim _{t \rightarrow \infty} u_{1}\left(c_{t}, h_{t}\right) \in[\phi, \phi+\delta]\right)>0$ and $\operatorname{Pr}\left(\lim _{t \rightarrow \infty} u_{1}\left(c_{t}, h_{t}\right)=\phi\right)=$ $\operatorname{Pr}\left(\lim _{t \rightarrow \infty} u_{1}\left(c_{t}, h_{t}\right)=\phi+\delta\right)=0$. At the same time we can have $\mid \xi(\phi, e)-\xi(\phi+$ $\delta, e) \left\lvert\,<\frac{\eta}{2}\right.$ and $|g(\phi, e)-g(\phi+\delta, e)| e w<\frac{\eta}{2}$ for all $e \in E$, since $\xi(\lambda, e)$ and $g(\lambda, e)$ are uniformly continuous on interval $[\psi, \psi+\delta]$.

Define $B=\left\{\lim _{t \rightarrow \infty} u_{1}\left(c_{t}, h_{t}\right) \in[\phi, \phi+\delta]\right\}$. Define $A_{\tau}=\left\{u_{1}\left(c_{\tau}, h_{\tau}\right) \in[\phi, \phi+\right.$ $\delta]\}$ and $B_{\tau}=\left\{u_{1}\left(c_{t}, h_{t}\right) \in[\phi, \phi+\delta], t \geq \tau\right\}$ for $\tau \geq 0$. Thus, $\lim _{\tau \rightarrow \infty} \operatorname{Pr}\left(A_{\tau}\right)=$ $\operatorname{Pr}(B)>0$ and $\lim _{\tau \rightarrow \infty} \operatorname{Pr}\left(B_{\tau}\right)=\operatorname{Pr}(B)>0$. We may choose $\tau<\infty$ such that $\operatorname{Pr}\left(B_{\tau}\right)>(1-\varepsilon) \operatorname{Pr}\left(A_{\tau}\right)>0$. If $V_{1}\left(a_{t}, e_{t}\right) \in[R \phi, R(\phi+\delta)]$, then a_{t} is bounded.

We have

$$
\operatorname{Pr}\left(\sum_{j=1}^{\infty}\left[c_{\tau+j-1}-\left(1-h_{\tau+j-1}\right) e_{\tau+j-1} w\right] R^{-j}-a_{\tau}=0 \mid B_{\tau}\right)=1 .
$$

Thus we have

$$
\operatorname{Pr}\left(\left.\begin{array}{c}
\sum_{j=1}^{\infty}\left[c_{\tau+j-1}-\xi\left(\phi, e_{\tau+j-1}\right)+\left[h_{\tau+j-1}-g\left(\phi, e_{\tau+j-1}\right)\right] e_{\tau+j-1} w\right] R^{-j} \\
+\sum_{j=1}^{\infty}\left[\xi\left(\phi, e_{\tau+j-1}\right)-\left[1-g\left(\phi, e_{\tau+j-1}\right)\right] e_{\tau+j-1} w\right] R^{-j}-a_{\tau}=0
\end{array} \right\rvert\, B_{\tau}\right)=1 .
$$

Since $\beta R=1$ and we know that $|\xi(\phi, e)-\xi(\phi+\delta, e)|<\frac{\eta}{2}$ and $\mid g(\phi, e)-g(\phi+$ $\delta, e) \left\lvert\, e w<\frac{\eta}{2}\right.$ for all $e \in E$,

$$
\operatorname{Pr}\left(\left.\begin{array}{c}
\left|\sum_{j=1}^{\infty}\left[c_{\tau+j-1}-\xi\left(\phi, e_{\tau+j-1}\right)+\left[h_{\tau+j-1}-g\left(\phi, e_{\tau+j-1}\right)\right] e_{\tau+j-1} w\right] R^{-j}\right| \\
<\frac{\beta}{1-\beta} \eta=\frac{\varepsilon}{2}
\end{array} \right\rvert\, B_{\tau}\right)=1 .
$$

Thus,

$$
\operatorname{Pr}\left(\left.\left|\sum_{j=1}^{\infty}\left[\xi\left(\phi, e_{\tau+j-1}\right)-\left(1-g\left(\phi, e_{\tau+j-1}\right)\right) e_{\tau+j-1} w\right] R^{-j}-a_{\tau}\right|<\frac{\varepsilon}{2} \right\rvert\, B_{\tau}\right)=1 .
$$

Since $\beta R=1$ and $\chi(\phi, e)=\xi(\phi, e)-[1-g(\phi, e)] e w$, we have

$$
\operatorname{Pr}\left(\left.\left|\sum_{j=1}^{\infty} \chi\left(\phi, e_{\tau+j-1}\right) \beta^{j}-a_{\tau}\right|<\frac{\varepsilon}{2} \right\rvert\, B_{\tau}\right)=1 .
$$

Let $\alpha=a_{\tau}-\frac{\varepsilon}{2}$. Since $B_{\tau} \subset A_{\tau}$ and $\operatorname{Pr}\left(B_{\tau}\right)>(1-\varepsilon) \operatorname{Pr}\left(A_{\tau}\right)$, it follows that

$$
\operatorname{Pr}\left(\alpha<\sum_{j=1}^{\infty} \chi\left(\phi, e_{\tau+j-1}\right) \beta^{j}<\alpha+\varepsilon \mid A_{\tau}\right)>1-\varepsilon .
$$

Let $z^{\tau}=\left(e_{0}, e_{1}, \cdots, e_{\tau}\right)$. Thus, the event

$$
\operatorname{Pr}\left(\alpha<\sum_{j=1}^{\infty} \chi\left(\phi, e_{\tau+j-1}\right) \beta^{j}<\alpha+\varepsilon \mid z^{\tau}\right)>1-\varepsilon
$$

has a positive probability since A_{τ} is measurable with respect to z^{τ}. Note that $\left\{e_{t}\right\}_{t=0}^{\infty}$ follows a Markov chain. Thus exists $e_{\tau} \in E$ such that

$$
\operatorname{Pr}\left(\alpha<\sum_{j=1}^{\infty} \chi\left(\phi, e_{\tau+j-1}\right) \beta^{j}<\alpha+\varepsilon \mid e_{\tau}\right)>1-\varepsilon,
$$

which contradicts Lemma 3. Thus, we have

$$
\operatorname{Pr}\left(\lim _{t \rightarrow \infty} u_{1}\left(c_{t}, h_{t}\right) \leq \bar{\lambda}\right)=1 .
$$

If $\bar{\lambda}>0$, then $g(\lambda, e)=1$ for $\lambda \in(0, \bar{\lambda}]$ and all $e \in E$. Thus, we have

$$
\lim _{t \rightarrow \infty} h_{t}=1 \text { a.s. }
$$

If $\bar{\lambda}=0$, then we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} V_{1}\left(a_{t}, e_{t}\right)=0 \text { a.s. } \tag{A.6}
\end{equation*}
$$

Let $D=\left\{\omega: \liminf _{t \rightarrow \infty} a_{t}(\omega)<\infty\right\}$. For each $\omega \in D$, there exists a bounded subsequence $\left\{a_{t_{k}}(\omega)\right\}_{k=1}^{\infty}$ and $B(\omega)>0$ such that $a_{t_{k}}(\omega)<B(\omega)$ for all $k \geq 0$. Suppose that the probability of D is positive, i.e., $\operatorname{Pr}(D)>0$. From Equation (A.6), we can pick a path ω in D such that $V_{1}\left(a_{t_{k}}(\omega), e_{t_{k}}(\omega)\right) \rightarrow 0$ as $k \rightarrow \infty$. For convenience I omit ω in the following derivation. Thus, we have

$$
V_{1}\left(a_{t_{k}}, e_{t_{k}}\right) \geq V_{1}\left(B, e_{t_{k}}\right) \geq \min _{e \in E}\left\{V_{1}(B, e)\right\}>0, \forall k \geq 0,
$$

We have a contradiction. Therefore, we have

$$
\lim _{t \rightarrow \infty} a_{t}=\infty \text { a.s. }
$$

1.10 Proof of Proposition 5

Proof: From the definition of \bar{k} we know that $h(a, e)=1$ for $a \geq \bar{k}>0$ and all $e \in E$. For $a \geq \bar{k}$, suppose that

$$
a^{\prime}(a, \hat{e}(a))=\max _{e \in E}\left\{a^{\prime}(a, e)\right\}>a .
$$

Then, we have

$$
\begin{equation*}
V_{1}(a, \hat{e}(a))=E\left[V_{1}\left(a^{\prime}(a, \hat{e}(a)), e^{\prime}\right) \mid \hat{e}(a)\right]<E\left[V_{1}\left(a, e^{\prime}\right) \mid \hat{e}(a)\right] . \tag{A.7}
\end{equation*}
$$

Now, the budget constraint (1) becomes

$$
\begin{equation*}
c(a, e)+a^{\prime}(a, e)=R a . \tag{A.8}
\end{equation*}
$$

Since

$$
a^{\prime}(a, \hat{e}(a))=\max _{e \in E}\left\{a^{\prime}(a, e)\right\} \geq a^{\prime}(a, e)
$$

we have $c(a, e) \geq c(a, \hat{e}(a))$ for all $e \in E$. Thus,

$$
V_{1}(a, \hat{e}(a))=R u_{1}(c(a, \hat{e}(a)), 1) \geq E\left[R u_{1}\left(c\left(a, e^{\prime}\right), 1\right) \mid \hat{e}(a)\right]=E\left[V_{1}\left(a, e^{\prime}\right) \mid \hat{e}(a)\right],
$$

which contradicts Equation (A.7). Thus, we have $a(a, e) \leq a$ for $a \geq \bar{k}$ and all $e \in E$.

For $a \geq \bar{k}$, suppose that there exists $e^{(1)} \in E$ such that $a\left(a, e^{(1)}\right)<a$. Then, we have

$$
V_{1}\left(a, e^{(1)}\right) \geq E\left[V_{1}\left(a\left(a, e^{(1)}\right), e^{\prime}\right) \mid e^{(1)}\right]>E\left[V_{1}\left(a, e^{\prime}\right) \mid e^{(1)}\right]
$$

Thus, there exists $e^{(2)} \in E$ such that $V_{1}\left(a, e^{(2)}\right)<V_{1}\left(a, e^{(1)}\right)$. Since

$$
V_{1}\left(a, e^{(1)}\right)=R u_{1}\left(c\left(a, e^{(1)}\right), 1\right),
$$

and

$$
V_{1}\left(a, e^{(2)}\right)=R u_{1}\left(c\left(a, e^{(2)}\right), 1\right),
$$

we have $c\left(a, e^{(2)}\right)>c\left(a, e^{(1)}\right)$. Therefore, $a\left(a, e^{(2)}\right)<a\left(a, e^{(1)}\right)<a$. Then, we have

$$
V_{1}\left(a, e^{(2)}\right) \geq E\left[V_{1}\left(a\left(a, e^{(2)}\right), e^{\prime}\right) \mid e^{(2)}\right]>E\left[V_{1}\left(a, e^{\prime}\right) \mid e^{(2)}\right]
$$

Thus, there exists $e^{(3)} \in E$ such that $V_{1}\left(a, e^{(3)}\right)<V_{1}\left(a, e^{(2)}\right)<V_{1}\left(a, e^{(1)}\right)$. Since

$$
V_{1}\left(a, e^{(2)}\right)=R u_{1}\left(c\left(a, e^{(2)}\right), 1\right),
$$

and

$$
V_{1}\left(a, e^{(3)}\right)=R u_{1}\left(c\left(a, e^{(3)}\right), 1\right),
$$

we have $c\left(a, e^{(3)}\right)>c\left(a, e^{(2)}\right)$. Thus, $a^{\prime}\left(a, e^{(3)}\right)<a^{\prime}\left(a, e^{(2)}\right)<a^{\prime}\left(a, e^{(1)}\right)<$ a. By induction, we have $V_{1}\left(a, e^{(n)}\right)<\cdots<V_{1}\left(a, e^{(2)}\right)<V_{1}\left(a, e^{(1)}\right)$ and $a^{\prime}\left(a, e^{(n)}\right)<\cdots<a^{\prime}\left(a, e^{(2)}\right)<a^{\prime}\left(a, e^{(1)}\right)<a$. From $a^{\prime}\left(a, e^{(n)}\right)<a$ we know that

$$
V_{1}\left(a, e^{(n)}\right) \geq E\left[V_{1}\left(a\left(a, e^{(n)}\right), e^{\prime}\right) \mid e^{(n)}\right]>E\left[V_{1}\left(a, e^{\prime}\right) \mid e^{(n)}\right] .
$$

This is impossible since $V_{1}\left(a, e^{(n)}\right)<\cdots<V_{1}\left(a, e^{(2)}\right)<V_{1}\left(a, e^{(1)}\right)$. Thus we know that, for $a \geq \bar{k}$, there does not exist $e \in E$ such that $a(a, e)<a$. Then, we have $a(a, e)=a$ for $a \geq \bar{k}$ and all $e \in E$.

From the budget constraint (A.8) we have $c(a, e)=(R-1) a=r a$ for $a \geq \bar{k}$ and all $e \in E$.

The borrowing constraint implies that $a_{t+1} \geq 0$ for all $t \geq 0$. Since $a^{\prime}(\bar{k}, e)=$ \bar{k} for all $e \in E$, we know that

$$
a^{\prime}(a, e) \leq a^{\prime}(\bar{k}, e)=\bar{k},
$$

for $a \leq \bar{k}$ and all $e \in E$, from part 3) of Proposition 2. If $a_{0} \in[0, \bar{k}], a_{1}=$ $a^{\prime}\left(a_{0}, e_{0}\right) \leq \bar{k}$. Thus $a_{2}=a^{\prime}\left(a_{1}, e_{1}\right) \leq \bar{k}$. By induction, we have $a_{t} \leq \bar{k}$ for all $t \geq 1$. Thus, $a_{t} \in[0, \bar{k}]$ for all $t \geq 0$.

If $a_{0} \leq \bar{k}$, wealth accumulation is bounded. Thus we have $\lim _{t \rightarrow \infty} h_{t}=1$ almost surely from Theorem 2. Consequently, we have

$$
\operatorname{Pr}\left(\left\{\omega: \lim \inf _{t \rightarrow \infty} h_{t}(\omega)<1\right\}\right)=0 .
$$

Let $A=\left\{\omega: \liminf _{t \rightarrow \infty} a_{t}(\omega)=a_{*}(\omega)<\bar{k}\right\}$. Since $a_{*}(\omega)<\bar{k}$, there exists $e^{*} \in E$ such that $h\left(a_{*}(\omega), e^{*}\right)<1$. We know that $\operatorname{Pr}\left(e_{t}=e\right.$ infinitely often $)=1$ for each $e \in E$. Since $h(a, e)$ is continuous in a by part 1) of Proposition 3, we have $A \subset\left\{\omega: \lim _{\inf _{t \rightarrow \infty}} h_{t}(\omega)<1\right\}$. Thus,

$$
\operatorname{Pr}(A) \leq \operatorname{Pr}\left(\left\{\omega: \lim \inf _{t \rightarrow \infty} h_{t}(\omega)<1\right\}\right)=0 .
$$

We have $\operatorname{Pr}(A)=0$. Thus,

$$
\operatorname{Pr}\left(\left\{\omega: \lim \inf _{t \rightarrow \infty} a_{t}(\omega) \geq \bar{k}\right\}\right)=1
$$

Therefore, we have $\lim _{t \rightarrow \infty} a_{t}=\bar{k}$ almost surely.
From part 2) of Proposition 3 we know that $\bar{k}<\infty$ in Case A) of Assumption 5.

1.11 Proof of Proposition 6

Proof: If $\bar{k}<\infty$, from Proposition 5, we know that $\operatorname{Pr}\left(\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}\right.$ is bounded $)=$ 1. Thus, $\lim _{t \rightarrow \infty} a_{t}=\infty$ almost surely implies that $\bar{k}=\infty$.

To prove the other direction, note that $\operatorname{Pr}\left(\lim _{t \rightarrow \infty} a_{t}=\infty\right)<1$ implies that $\operatorname{Pr}\left(\lim _{t \rightarrow \infty} h_{t}=1\right)=1$ from Theorem 2. Let $D=\left\{\omega: \liminf _{t \rightarrow \infty} a_{t}(\omega)<\infty\right\}$. Thus, $\operatorname{Pr}(D)=1-\operatorname{Pr}\left(\lim _{t \rightarrow \infty} a_{t}=\infty\right)>0$. We know that $\operatorname{Pr}\left(e_{t}=e\right.$ infinitely often $)=$ 1 for each $e \in E$. Thus we can find $\omega \in D$ such that, for each $e \in E$, there exists a subsequence $\left\{\left(a_{t_{k}^{e}}(\omega), e_{t_{k}^{e}}(\omega)\right)\right\}_{k=1}^{\infty}, \lim _{k \rightarrow \infty} a_{t_{k}^{e}}(\omega)=B(e)<\infty$, $\lim _{k \rightarrow \infty} h\left[a_{t_{k}^{e}}(\omega), e_{t_{k}^{e}}(\omega)\right]=1$, and $e_{t_{k}^{e}}(\omega)=e$ for all $k \geq 1$. From part 1) of Proposition 3 we know that $h(a, e)$ is continuous and increasing in a. Thus we have $h(a, e)=1$ for $a \geq B(e)$ and $e \in E$. Thus, $\bar{k}<\infty$. Therefore, $\bar{k}=\infty$ implies that $\lim _{t \rightarrow \infty} a_{t}=\infty$ almost surely.

1.12 Proof of Lemma 4

Proof: For $a>0$, suppose that $a^{\prime}(a, e) \geq a$ for all $e \in E$. Then we have

$$
a^{\prime}(a, e) \geq a>0,
$$

for all $e \in E$. Thus,

$$
\begin{equation*}
V_{1}(a, e)=\beta R E\left[V_{1}\left(a^{\prime}(a, e), e^{\prime}\right) \mid e\right] \leq \beta R E\left[V_{1}\left(a, e^{\prime}\right) \mid e\right]<E\left[V_{1}\left(a, e^{\prime}\right) \mid e\right], \tag{A.9}
\end{equation*}
$$

for all $e \in E$.
Pick $e^{(1)} \in E$. By Equation (A.9) we have

$$
V_{1}\left(a, e^{(1)}\right)<E\left[V_{1}\left(a, e^{\prime}\right) \mid e^{(1)}\right]
$$

Thus there exists $e^{(2)} \in E$ such that $V_{1}\left(a, e^{(1)}\right)<V_{1}\left(a, e^{(2)}\right)$. It follows from Equation (A.9) that

$$
V_{1}\left(a, e^{(2)}\right)<E\left[V_{1}\left(a, e^{\prime}\right) \mid e^{(2)}\right]
$$

Thus there exists $e^{(3)} \in E$ such that $V_{1}\left(a, e^{(1)}\right)<V_{1}\left(a, e^{(2)}\right)<V_{1}\left(a, e^{(3)}\right)$. By induction, we have $V_{1}\left(a, e^{(1)}\right)<V_{1}\left(a, e^{(2)}\right)<\cdots<V_{1}\left(a, e^{(n)}\right)$.

However, Equation (A.9) also implies that

$$
V_{1}\left(a, e^{(n)}\right)<E\left[V_{1}\left(a, e^{\prime}\right) \mid e^{(n)}\right]
$$

This is impossible since $V_{1}\left(a, e^{(1)}\right)<V_{1}\left(a, e^{(2)}\right)<\cdots<V_{1}\left(a, e^{(n)}\right)$. Therefore, for $a>0$, there exists $e \in E$ such that $a^{\prime}(a, e)<a$.

1.13 Proof of Proposition 7

Proof: For $a \geq \bar{k}$, suppose that

$$
a^{\prime}(a, \hat{e}(a))=\max _{e \in E}\left\{a^{\prime}(a, e)\right\} \geq a
$$

Thus we have

$$
\begin{align*}
V_{1}(a, \hat{e}(a)) & =\beta R E\left[V_{1}\left(a^{\prime}(a, \hat{e}(a)), e^{\prime}\right) \mid \hat{e}(a)\right] \\
& \leq \beta R E\left[V_{1}\left(a, e^{\prime}\right) \mid \hat{e}(a)\right]<E\left[V_{1}\left(a, e^{\prime}\right) \mid \hat{e}(a)\right] \tag{A.10}
\end{align*}
$$

since $\beta R<1$.
We know that $h(a, e)=1$ for $a \geq \bar{k}$ and all $e \in E$, by part 2) of Proposition 3. Thus, the budget constraint (1) becomes

$$
c(a, e)+a^{\prime}(a, e)=R a, a \geq \bar{k}
$$

We have $c(a, e) \geq c(a, \hat{e}(a))$ for $a \geq \bar{k}$ and all $e \in E$ since

$$
a^{\prime}(a, \hat{e}(a))=\max _{e \in E}\left\{a^{\prime}(a, e)\right\} \geq a^{\prime}(a, e) .
$$

By Lemma 4, there exists $\tilde{e} \in E$ such that $a^{\prime}(a, \tilde{e})<a$. We have $c(a, \tilde{e})>$ $c(a, \hat{e}(a))$, since

$$
a^{\prime}(a, \hat{e}(a)) \geq a>a^{\prime}(a, \tilde{e}) .
$$

Thus we have

$$
V_{1}(a, \hat{e}(a))=R u_{1}(c(a, \hat{e}(a)), 1)>E\left[R u_{1}\left(c\left(a, e^{\prime}\right), 1\right) \mid \hat{e}(a)\right]=E\left[V_{1}\left(a, e^{\prime}\right) \mid \hat{e}(a)\right],
$$

which contradicts Equation (A.10). Thus, we have $a^{\prime}(a, e)<a$ for $a \geq \bar{k}$ and all $e \in E$.

From part 2) of Proposition 3 we know that $\bar{k}<\infty$ in Case A) of Assumption 5.

1.14 Proof of Theorem 3

Proof: If Case A) of Assumption 5 holds, we pick $k^{b}=\bar{k}$. If Case B) of Assumption 5 holds, we know from Proposition 8 that there exists $k^{b}>0$ such that $a^{\prime}(a, e)<a$ for all $a \geq k^{b}$ and $e \in E$.

Note that $a_{0} \leq \max \left\{k^{b}, a_{0}\right\}$. From Propositions 7 and 8, we know that $a^{\prime}\left(k^{b}, e\right)<k^{b}$ for all $e \in E$. From part 3) of Proposition 2 we have

$$
a^{\prime}(a, e) \leq a^{\prime}\left(k^{b}, e\right)<k^{b},
$$

for $a \leq k^{b}$ and all $e \in E$. Thus,

$$
\begin{equation*}
a_{t+1}=a^{\prime}\left(a_{t}, e_{t}\right) \leq k^{b}, \text { if } a_{t} \leq k^{b} \tag{A.11}
\end{equation*}
$$

If $k^{b}<a_{t} \leq a_{0}, a_{t+1}=a^{\prime}\left(a_{t}, e_{t}\right)<a_{t} \leq a_{0}$, by Propositions 7 and 8. Thus, $a_{t} \leq \max \left\{k^{b}, a_{0}\right\}$ implies that $a_{t+1} \leq \max \left\{k^{b}, a_{0}\right\}$. By mathematical induction, we have $a_{t} \leq \max \left\{k^{b}, a_{0}\right\}$ for all $t \geq 0$.

Case (i) $a_{0} \leq k^{b}$. We have $a_{t} \leq k^{b}$ for all $t \geq 0$. Thus,

$$
\operatorname{Pr}\left(a_{t} \leq k^{b}, \forall t \geq 0\right)=1
$$

Case (ii) $a_{0}>k^{b}$. Define $\theta=\min \left\{a-\hat{a}(a): a \in\left[k^{b}, a_{0}\right]\right\}>0$. The relationship (A.11) implies that the wealth accumulation process $\left\{a_{t}\right\}_{t=0}^{\infty}$ stays in $\left[0, k^{b}\right]$ if it reaches the interval. Additionally, we know that $\hat{a}(a)<a$ if $a \geq k^{b}$. Given $a_{t} \geq k^{b}, a_{t}$ decreases by at least θ in one step. Thus, starting from a_{0}, the process $\left\{a_{t}\right\}_{t=0}^{\infty}$ reaches $\left[0, k^{b}\right]$ in at most $\left[\frac{a_{0}-k^{b}}{\theta}\right]+1$ steps. Then it stays in $\left[0, k^{b}\right]$. Thus,

$$
\operatorname{Pr}\left(a_{t} \leq k^{b}, \forall t \geq\left[\frac{a_{0}-k^{b}}{\theta}\right]+1\right)=1 .
$$

Combining Cases (i) and (ii), we have

$$
\operatorname{Pr}\left(a_{t} \leq k^{b}, \forall t \geq I\right)=1,
$$

where

$$
I=\left\{\begin{array}{cl}
0, & \text { if } a_{0} \leq k^{b} \\
{\left[\frac{a_{0}-k^{b}}{\theta}\right]+1,} & \text { if } a_{0}>k^{b}
\end{array} .\right.
$$

1.15 Proof of Proposition 9

Proof: From the definition \bar{a} in Section 2.3 we know that $a^{\prime}(\bar{a}, e) \leq \hat{a}(\bar{a})=\bar{a}$ for all $e \in E$. If $a_{t} \leq \bar{a}$,

$$
a_{t+1}=a^{\prime}\left(a_{t}, e_{t}\right) \leq a^{\prime}\left(\bar{a}, e_{t}\right) \leq \bar{a} .
$$

Thus we have

$$
\begin{equation*}
\operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \in S, \forall t \geq T \mid\left(a_{T}, e_{T}\right) \in S\right)=1 \tag{A.12}
\end{equation*}
$$

Equation (A.12) implies that the process $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ stays in S if it reaches S.
Case (i) $\left(a_{0}, e_{0}\right) \in S$. Thus, $T=0$ in Equation (A.12). We have

$$
\operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \in S, \forall t \geq 0 \mid\left(a_{0}, e_{0}\right) \in S\right)=1
$$

Case (ii) $\left(a_{0}, e_{0}\right) \notin S$. From Proposition 3 we know that there exists $I \geq 1$ such that

$$
\operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \in[0, \bar{k}] \times E, \forall t \geq I\right)=1
$$

Let

$$
\check{a}(a)=\min _{e \in E}\left\{a^{\prime}(a, e)\right\} .
$$

Thus, $\check{a}(a)$ is continuous in a since $a^{\prime}(a, e)$ is continuous in a by part 3) of Proposition 2. By Lemma 4, we have $\check{a}(a)<a$ for all $a>0$. Let $\gamma=\min \{a-\check{a}(a)$: $a \in[\bar{a}, \bar{k}]\}$. Thus, $\gamma>0$. Given $a_{t} \in[\bar{a}, \bar{k}], a_{t}$ could decrease by at least γ in one step. Let

$$
q=\left[\frac{\bar{k}-\bar{a}}{\gamma}\right]+1 .
$$

From Proposition 3 and the Markov property of the process $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$, we know that the process stays in $[0, \bar{k}] \times E$ if it reaches $[0, \bar{k}] \times E$. We have

$$
(\bar{a}, \bar{k}] \times E=\{(a, e):(a, e) \in[0, \bar{k}] \times E \text { and }(a, e) \notin S\} .
$$

For any $(a, e) \in(\bar{a}, \bar{k}] \times E$, we can pick the realization sequence of labor efficiency shocks $e^{\prime} s$ such that (a, e) moves along ($\left.\check{a}(a), e\right)$ to reach S in at most q steps. Let

$$
\bar{P}=\min _{\left(e, e^{\prime}\right) \in E \times E}\left\{\pi\left(e^{\prime} \mid e\right)\right\} .
$$

For any $j \geq 1$ we know that

$$
\operatorname{Pr}\left(\exists(j+1) \leq t \leq(j+q), \text { such that }\left(a_{t}, e_{t}\right) \in S \mid\left(a_{j}, e_{j}\right) \in(\bar{a}, \bar{k}] \times E\right)>(\bar{P})^{q} .
$$

Thus we have

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \in(\bar{a}, \bar{k}] \times E, t=j+1, j+2, \cdots, j+q \mid\left(a_{j}, e_{j}\right) \in(\bar{a}, \bar{k}] \times E\right) \\
= & 1-\operatorname{Pr}\left(\exists(j+1) \leq t \leq(j+q), \text { such that }\left(a_{t}, e_{t}\right) \in S \mid\left(a_{j}, e_{j}\right) \in(\bar{a}, \bar{k}] \times E\right) \\
\leq & 1-(\bar{P})^{q} .
\end{aligned}
$$

Then, we know that

$$
\begin{aligned}
& \operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \notin S, \forall t \geq 1 \mid\left(a_{0}, e_{0}\right) \notin S\right) \\
= & \operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \in(\bar{a}, \bar{k}] \times E, \forall t \geq I \mid\left(a_{0}, e_{0}\right) \notin S\right) \\
\leq & \operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \in(\bar{a}, \bar{k}] \times E, t=I, I+1, \cdots, I+n q \mid\left(a_{0}, e_{0}\right) \notin S\right) \\
= & \operatorname{Pr}\left(\left(a_{I}, e_{I}\right) \in(\bar{a}, \bar{k}] \times E \mid\left(a_{0}, e_{0}\right) \notin S\right) \\
& \times \operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \in(\bar{a}, \bar{k}] \times E, t=I+1, I+2, \cdots, I+q \mid\left(a_{I}, e_{I}\right) \in(\bar{a}, \bar{k}] \times E\right) \\
& \times \operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \in(\bar{a}, \bar{k}] \times E, t=I+q+1, I+q+2, \cdots, I+2 q \mid\left(a_{I+q}, e_{I+q}\right) \in(\bar{a}, \bar{k}] \times E\right) \\
& \times \cdots \\
& \times \operatorname{Pr}\left(t=I+(n-1) q+1, \cdots, I+n q \mid\left(a_{I+(n-1) q}, e_{I+(n-1) q}\right) \in(\bar{a}, \bar{k}] \times E\right) \\
\leq & \operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \in(\bar{a}, \bar{k}] \times E, t=I+1, I+2, \cdots, I+q \mid\left(a_{I}, e_{I}\right) \in(\bar{a}, \bar{k}] \times E\right) \\
& \times \operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \in(\bar{a}, \bar{k}] \times E, t=I+q+1, I+q+2, \cdots, I+2 q \mid\left(a_{I+q}, e_{I+q}\right) \in(\bar{a}, \bar{k}] \times E\right) \\
& \times \cdots \\
& \left.\times \operatorname{Pr}(t) \mid\left(a_{I+(n-1) q}, e_{I+(n-1) q}\right) \in(\bar{a}, \bar{k}] \times E\right) \\
\leq & {\left[1-(\bar{P})^{q}\right]^{n} . }
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have

$$
\operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \notin S, \forall t \geq 1 \mid\left(a_{0}, e_{0}\right) \notin S\right)=0 .
$$

Thus, we know that

$$
\begin{aligned}
& \operatorname{Pr}\left(\exists T \geq 1, \text { such that }\left(a_{T}, e_{T}\right) \in S \mid\left(a_{0}, e_{0}\right) \notin S\right) \\
= & 1-\operatorname{Pr}\left(\left(a_{t}, e_{t}\right) \notin S, \forall t \geq 1 \mid\left(a_{0}, e_{0}\right) \notin S\right) \\
= & 1 .
\end{aligned}
$$

1.16 Proof of Lemma 5

Proof: Suppose that $a^{\prime}(a, e)>0$ for $a>0$ and all $e \in E$. Thus, for $a_{0}>0$, we have

$$
V_{1}\left(a_{0}, e_{0}\right)=(\beta R)^{t} E_{0} V_{1}\left(a_{t}, e_{t}\right), \forall t \geq 0 .
$$

Note that $V_{1}\left(a_{0}, e_{0}\right)>0$. The right-hand side of this equation approaches 0 as $t \rightarrow \infty$, since $\beta R<1$ and $V_{1}(a, e)<V_{1}(0, e)<\infty$ for $a>0$ and all $e \in E$. We have a contradiction. Thus, there exist $\tilde{a}>0$ and $\tilde{e} \in E$ such that $a^{\prime}(\tilde{a}, \tilde{e})=0$. From part 3) of Proposition 2, we know that $a^{\prime}(a, \tilde{e})$ is weakly increasing in a. Thus, we have $a^{\prime}(a, \tilde{e})=0$ for $a \in[0, \tilde{a}]$.

1.17 Proof of Theorem 4

Proof: By Theorem 16.0.2 posited by Meyn and Tweedie (2009), $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ is uniformly ergodic if the state space S is v_{m}-small for some m.

Definition $1 A$ set $C \in \mathbf{B}(S)$ is called a small set if there exists $m>0$ and non-trivial measure v_{m} on $\mathbf{B}(S)$ such that $P^{m}(s, B) \geq v_{m}(B)$ for all $s \in C$ and $B \in \mathbf{B}(S)$.

Let $\check{a}(a)=\min _{e \in E}\left\{a^{\prime}(a, e)\right\}$. Thus, $\check{a}(a)$ is continuous in a since $a^{\prime}(a, e)$ is continuous in a by part 3) of Proposition 2. By Lemma 4, we have $\check{a}(a)<a$ for all $a>0$. By Lemma 5, there exists $\tilde{a}>0$ such that $\check{a}(a)=0$ for $a \leq \tilde{a}$. Let $\kappa=\min \{a-\check{a}(a): a \in[\tilde{a}, \bar{a}]\}$. Thus, $\kappa>0$. Let

$$
m=\left[\frac{\bar{a}}{\kappa}\right]+1,
$$

and

$$
\bar{P}=\min _{\left(e, e^{\prime}\right) \in E \times E}\left\{\pi\left(e^{\prime} \mid e\right)\right\} .
$$

Define a non-trivial measure v_{m} on $\mathbf{B}(S)$ as, for all $B \in \mathbf{B}(S)$,

$$
v_{m}(B)=\left\{\begin{array}{cl}
(\bar{P})^{m}, & \text { if }(0, \tilde{e}) \in B \\
0, & \text { if }(0, \tilde{e}) \notin B
\end{array},\right.
$$

where \tilde{e} is defined in Lemma 5 .
For all $s \in S$, we can pick the realization sequence of labor efficiency shocks $e^{\prime} s$ such that (a, e) moves along $(\breve{a}(a), e)$ to reach state $s^{*}=(0, \tilde{e})$ in at most m steps. Thus we have $P^{m}(s, B) \geq v_{m}(B)$ for all $s \in S$ and $B \in \mathbf{B}(S)$. We conclude that S is v_{m}-small.

Let $\rho=\left[1-v_{m}(S)\right]^{\frac{1}{m}}$. Thus, we obtain the results of Theorem 4 through using Theorem 16.0.2 presented by Meyn and Tweedie (2009).

1.18 Proof of Proposition 10

Proof: From Theorem 4 we know that the process $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ has a unique stationary distribution μ on S. By Theorem 17.0.1 posited by Meyn and Tweedie (2009), the Law of Large Numbers holds for any $\mathbf{B}(S)$-measurable function f satisfying $\int_{S}|f| d \mu<\infty$, if $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ is a positive Harris chain. ${ }^{1}$ From their Theorem 18.0.2, we know that $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ is a positive Harris chain if it satisfies the following three conditions:

1) $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ is a T-chain, ${ }^{2}$
2) There exists a reachable state s^{*}, and
3) $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ is bounded. ${ }^{3}$

By Theorem 6.2.5 posited by Meyn and Tweedie (2009), $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ is a T-chain if every compact set is petite. A slight change in Proof of Theorem 4 can show that every compact set of S is a small set. By Proposition 5.5 .3 posited

[^0]by Meyn and Tweedie (2009), every small set is a petite set. ${ }^{4}$ Thus, $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ is a T-chain. Condition 1) is verified.

From Proof of Theorem 4, we know that $s^{*}=(0, \tilde{e})$, where \tilde{e} is defined in Lemma 5, and is a reachable state. Thus, condition 2) is satisfied.

Condition 3) is obviously satisfied since S is compact.

1.19 Proof of Proposition 11

Proof: Let $s^{*}=(0, \tilde{e})$, where \tilde{e} is defined in Lemma 5. Furthermore, let

$$
\tau_{s^{*}}=\min \left\{t \geq 1:\left(a_{t}, e_{t}\right)=s^{*}\right\} .
$$

By Theorem 10.2.2 (Kac's Theorem) proposed by Meyn and Tweedie (2009), $E_{s^{*}}\left[\tau_{s^{*}}\right]<\infty$, and $\mu\left(s^{*}\right)=\left(E_{s^{*}}\left[\tau_{s^{*}}\right]\right)^{-1}$ if $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ is ψ-irreducible and positive recurrent. From Proof of Proposition 10 we know that $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ is a T-chain and s^{*} is a reachable state. By Proposition 6.2.1 posited by Meyn and Tweedie (2009), $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ is ψ-irreducible. From Proof of Proposition 10 we know that $\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}$ is positive Harris recurrent. Thus, it is positive recurrent. Therefore, we have

$$
\mu(\{(a, e): a=0\}) \geq \mu\left(s^{*}\right)=\left(E_{s^{*}}\left[\tau_{s^{*}}\right]\right)^{-1}>0 .
$$

1.20 Proof of Lemma 6

Proof: Since $f(x)$ is a continuous function of $x \in[b, d]$, it is uniformly continuous on $[b, d]$. Thus, for any $\varepsilon>0$, there exists a subdivision of $[b, d]$, such that $b=\xi_{0}<\xi_{1}<\xi_{2}<\cdots<\xi_{m(\varepsilon)}=d$ and $0 \leq f\left(\xi_{i+1}\right)-f\left(\xi_{i}\right)<\frac{\varepsilon}{2}$ for $0 \leq i \leq m(\varepsilon)$. For any $x \in[b, d]$, there exists $i(x)$ such that $0 \leq i(x)<$

[^1]$m(\varepsilon)$ and $\xi_{i(x)} \leq x \leq \xi_{i(x)+1}$. Since $f_{n}(s)$ is weakly increasing in x, we have $f_{n}\left(\xi_{i(x)}\right)-f(x) \leq f_{n}(x)-f(x) \leq f_{n}\left(\xi_{i(x)+1}\right)-f(x)$. Thus, $\left|f_{n}(x)-f(x)\right| \leq$ $\max \left\{\left|f_{n}\left(\xi_{i(x)}\right)-f(x)\right|,\left|f_{n}\left(\xi_{i(x)+1}\right)-f(x)\right|\right\}$. For any $0 \leq i \leq m(\varepsilon)$, there exists N_{i} such that $\left|f_{n}\left(\xi_{i}\right)-f\left(\xi_{i}\right)\right|<\frac{\varepsilon}{2}$ for all $n>N_{i}$, since $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for $x \in[b, d]$. Let $N=\max \left\{N_{0}, N_{1}, \cdots, N_{m(\varepsilon)}\right\}$. Thus $n>N$ implies that $\left|f_{n}\left(\xi_{i}\right)-f\left(\xi_{i}\right)\right|<\frac{\varepsilon}{2}$ for any $0 \leq i \leq m(\varepsilon)$. We have $\left|f_{n}\left(\xi_{i(x)}\right)-f(x)\right| \leq\left|f_{n}\left(\xi_{i(x)}\right)-f\left(\xi_{i(x)}\right)\right|+\left|f\left(\xi_{i(x)}\right)-f(x)\right|<$ $\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. Similarly, $\left|f_{n}\left(\xi_{i(x)+1}\right)-f(x)\right|<\varepsilon$. Therefore, we have $\left|f_{n}(x)-f(x)\right|<\varepsilon$ for all $x \in[b, d]$. Consequently, we know that $\left\{f_{n}\right\}_{n=1} \infty$ converges uniformly to f.

1.21 Proof of Proposition 12

Proof: I study the household's problem in two steps. In step 1, I solve an intratemporal problem. And, in step 2, I solve an intertemporal problem. In step 1, we know that $J(y, q), c^{s}(y, q)$, and $h^{s}(y, q)$ are continuous functions of y and q, by the Theorem of the Maximum. In step 2, we know that $V(a, e ; w, r), y(a, e ; w, r)$, and $a^{\prime}(a, e ; w, r)$ are continuous functions of a, e, w, and r, by Theorem 1 posited by Dutta et al. (1994). Thus,

$$
c(a, e ; w, r)=c^{s}[y(a, e ; w, r), e w] \text { is continuous in } a, e, w, \text { and } r,
$$

and

$$
h(a, e ; w, r)=h^{s}[y(a, e ; w, r), e w] \text { is continuous in } a, e, w \text {, and } r .
$$

The firm's profit-maximization conditions in Section 3.1 determine a continuous function $w(r)$ between wage rate w and interest rate r. Thus, we know that $c(s ; r), h(s ; r)$, and $a^{\prime}(s ; r)$ are continuous in s and r, where $s=(a, e)$.

1.22 Proof of Lemma 7

Proof: We prove this lemma in two cases.

Case A) of Assumption 5 holds.

For $r_{0} \in(-1, \bar{r})$, there exists $0<\bar{k}\left(r_{0}\right)<\infty$ such that $h\left(a, e ; r_{0}\right)=1$ for $a \geq \bar{k}\left(r_{0}\right)$ and all $e \in E$. Thus we have

$$
\frac{u_{2}\left[c\left(a, e ; r_{0}\right), 1\right]}{u_{1}\left[c\left(a, e ; r_{0}\right), 1\right]} \geq e w, \forall e \in E \text {, }
$$

for $a \geq \bar{k}\left(r_{0}\right)$. We know that $\frac{u_{2}(c, 1)}{u_{1}(c, 1)}$ is strictly increasing in c since $u_{21} u_{1}-$ $u_{11} u_{2}>0$ by Assumption 2. From part 1) of Proposition 3, we know that $\lim _{a \rightarrow \infty} c\left(a, e ; r_{0}\right)=\infty$. Thus, we can pick a sufficiently large $k^{M}\left(r_{0}\right)>\bar{k}\left(r_{0}\right)$ such that

$$
\frac{u_{2}\left[c\left(k^{M}\left(r_{0}\right), e ; r_{0}\right), 1\right]}{u_{1}\left[c\left(k^{M}\left(r_{0}\right), e ; r_{0}\right), 1\right]}>e w, \forall e \in E .
$$

From Proposition 12, we know that $c(a, e ; r)$ is continuous in r. Therefore, we could find $\varepsilon>0$ such that, for $r \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)$, we have

$$
\frac{u_{2}\left[c\left(k^{M}\left(r_{0}\right), e ; r\right), 1\right]}{u_{1}\left[c\left(k^{M}\left(r_{0}\right), e ; r\right), 1\right]}>e w, \forall e \in E .
$$

Thus, we have $h\left[k^{M}\left(r_{0}\right), e ; r\right]=1$ for all $e \in E$. By the definition of \bar{k} in Equation (6), we know that $\bar{k}(r) \leq k^{M}\left(r_{0}\right)$, for $r \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)$. From the definition of \bar{a} in Equation (11), we know that $\bar{a}(r)<\bar{k}(r)$, for $r \in(-1, \bar{r})$. Thus, $\bar{a}(r)<\bar{k}(r)<$ $k^{M}\left(r_{0}\right)$, for $r \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)$. For all $r \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)$, we find a uniform upper bound $k^{M}\left(r_{0}\right)$ for asset accumulation such that $[0, \bar{a}(r)] \subset\left[0, k^{M}\left(r_{0}\right)\right]$.

Case B) of Assumption 5 holds.
We want to show that there exists $\varepsilon>0$ and $0<k^{M}\left(r_{0}\right)<\infty$ for $r_{0} \in(-1, \bar{r})$ such that $\left\{\mu(r): r \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)\right\}$ has common bounded support $\left[0, k^{M}\left(r_{0}\right)\right] \times$ E. Suppose that, for some $e \in E$, we can pick sequence $\left\{\left(a_{m}, r_{m}\right)\right\}_{m=1}^{\infty}$ such that
$a^{\prime}\left(a_{m}, e ; r_{m}\right) \geq a_{m}, \lim _{m \rightarrow \infty} a_{m}=\infty$, and $\lim _{m \rightarrow \infty} r_{m}=r_{0}$. Thus, we have

$$
\begin{aligned}
c\left(a_{m}, e ; r_{m}\right) & =\left(1+r_{m}\right) a_{m}-a^{\prime}\left(a_{m}, e ; r_{m}\right)+\left(1-h_{m}\right) e w\left(r_{m}\right) \\
& \leq\left(1+r_{m}\right) a_{m}-a_{m}+\left(1-h_{m}\right) \operatorname{ew}\left(r_{m}\right) \\
& =r_{m} a_{m}+\left(1-h_{m}\right) e w\left(r_{m}\right) \\
& \leq r_{m} a_{m}+e w\left(r_{m}\right) .
\end{aligned}
$$

We have either $\lim _{m \rightarrow \infty} r_{m} a_{m}=\infty$ or $\liminf _{m \rightarrow \infty} r_{m} a_{m}=B<\infty$.
If there exists $B<\infty$ such that $\liminf _{m \rightarrow \infty} r_{m} a_{m}=B$, then we can find a subsequence $\left\{\left(a_{m_{i}}, r_{m_{i}}\right)\right\}_{i=1}^{\infty}$ such that $r_{m_{i}} a_{m_{i}}<B+1$ for $i \geq 1$. Thus, we have $c\left(a_{m_{i}}, e ; r_{m_{i}}\right) \leq B+1+e w\left(r_{m_{i}}\right)$ for $i \geq 1$. For $\epsilon>0$ we can find integer $I>0$ such that $r_{m_{i}} \in\left(r_{0}-\epsilon, r_{0}+\epsilon\right)$ for all $i \geq I$. Denote $\bar{w}=\max \left\{w(r): r \in\left[r_{0}-\epsilon, r_{0}+\epsilon\right]\right\}$. We know that $\bar{w}<\infty$ since $w(r)$ is continuous in r. From part 1) of Proposition 3, we know that $\lim _{a \rightarrow \infty} c\left(a, e ; r_{0}\right)=\infty$. Thus we can find A such that $c\left(A, e ; r_{0}\right)>$ $B+1+e \bar{w}$. Since $\lim _{i \rightarrow \infty} a_{m_{i}}=\infty$, there exits integer $\tilde{I}>0$ such that $a_{m_{i}}>A$ for all $i \geq \tilde{I}$. Thus we have $c\left(a_{m_{i}}, e ; r_{m_{i}}\right) \geq c\left(A, e ; r_{m_{i}}\right)$ for all $i \geq \tilde{I}$. Since $c(A, e ; r)$ is continuous in r from Proposition 12, we can find $\hat{i} \geq \max \{I, \tilde{I}\}$ such that $c\left(A, e ; r_{m_{i}}\right)>B+1+e \bar{w}$. Therefore,

$$
c\left(a_{m_{i}}, e ; r_{m_{i}}\right) \geq c\left(A, e ; r_{m_{i}}\right)>B+1+e \bar{w} \geq B+1+e w\left(r_{m_{i}}\right) \geq c\left(a_{m_{i}}, e ; r_{m_{i}}\right) .
$$

We have a contradiction.
If $\lim _{m \rightarrow \infty} r_{m} a_{m}=\infty$, then we have $r_{0}>0$. Thus we could find $\epsilon>0$ such that $r_{0}-\epsilon>0$ and $\beta\left(1+r_{0}+\epsilon\right)<1$. Denote $\bar{w}=\max \left\{w(r): r \in\left[r_{0}-\epsilon, r_{0}+\epsilon\right]\right\}$. Thus we have $r_{m} a_{m}+e w\left(r_{m}\right) \leq r_{m} a_{m}+e \bar{w}$. Letting $\Delta=0$ in Case B) of Assumption 5, we have

$$
\Psi(c, 0)=\max _{h, h^{\prime} \in[0,1]}\left\{\frac{u_{1}\left(c, h^{\prime}\right)}{u_{1}(c, h)}\right\} .
$$

Thus, for $\bar{\varepsilon}=\frac{1}{2}\left(\frac{1}{\beta\left(1+r_{0}+\epsilon\right)}-1\right)$, there exists $\overline{\bar{C}}>0$ such that

$$
\frac{u_{1}\left(c, h^{\prime}\right)}{u_{1}(c, h)}<1+\bar{\varepsilon}, \forall h, h^{\prime} \in[0,1],
$$

for all $c \geq \overline{\bar{C}}$. From Proof of Proposition 8, we know that there exists

$$
\overline{\bar{A}}=\frac{\overline{\bar{C}}}{r_{0}-\epsilon}>0,
$$

such that

$$
c(a, e ; r) \geq r a, \forall e \in E, \forall a \geq \overline{\bar{A}}, \forall r \in\left(r_{0}-\epsilon, r_{0}+\epsilon\right) .
$$

Thus we have $a^{\prime}\left(a_{m}, e ; r_{m}\right) \geq a_{m} \geq \overline{\bar{A}}>0$ for $a_{m} \geq \overline{\bar{A}}$. Therefore, we know that

$$
c\left(a^{\prime}\left(a_{m}, e ; r_{m}\right), e^{\prime} ; r_{m}\right) \geq r_{m} a^{\prime}\left(a_{m}, e ; r_{m}\right) \geq r_{m} a_{m}, \forall e \in E,
$$

for $a_{m} \geq \overline{\bar{A}}$ and $r_{m} \in\left(r_{0}-\epsilon, r_{0}+\epsilon\right)$. Consequently, we have

$$
\begin{aligned}
\Phi\left[c\left(a_{m}, e ; r_{m}\right), e w\left(r_{m}\right)\right] & =\beta\left(1+r_{m}\right) E\left[\Phi\left(c\left(a^{\prime}\left(a_{m}, e ; r_{m}\right), e^{\prime} ; r_{m}\right), e^{\prime} w\left(r_{m}\right)\right) \mid e\right] \\
& \leq \beta\left(1+r_{m}\right) E\left[\Phi\left(r_{m} a_{m}, e^{\prime} w\left(r_{m}\right)\right) \mid e\right]
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\Phi\left[r_{m} a_{m}+e \bar{w}, e w\left(r_{m}\right)\right] & \leq \Phi\left[r_{m} a_{m}+e w\left(r_{m}\right), e w\left(r_{m}\right)\right] \\
& \leq \Phi\left[c\left(a_{m}, e ; r_{m}\right), e w\left(r_{m}\right)\right] \\
& \leq \beta\left(1+r_{m}\right) E\left[\Phi\left(r_{m} a_{m}, e^{\prime} w\left(r_{m}\right)\right) \mid e\right] .
\end{aligned}
$$

Therefore, we have

$$
E\left[\left.\frac{\Phi\left[r_{m} a_{m}, e^{\prime} w\left(r_{m}\right)\right]}{\Phi\left[r_{m} a_{m}+e \bar{w}, e w\left(r_{m}\right)\right]} \right\rvert\, e\right] \geq \frac{1}{\beta\left(1+r_{m}\right)} \geq \frac{1}{\beta\left(1+r_{0}+\epsilon\right)},
$$

which implies that there exists $e^{\prime} \in E$ and a subsequence $\left\{\left(a_{m_{i}}, r_{m_{i}}\right)\right\}_{i=1}^{\infty}$ such that

$$
\begin{aligned}
\max _{h, h^{\prime} \in[0,1]}\left\{\frac{u_{1}\left(r_{m_{i}} a_{m_{i}}, h^{\prime}\right)}{u_{1}\left(r_{m_{i}} a_{m_{i}}+e \bar{w}, h\right)}\right\} & \geq \frac{u_{1}\left[r_{m_{i}} a_{m_{i}}, j\left(r_{m_{i}} a_{m_{i}}, e^{\prime} w\left(r_{m_{i}}\right)\right)\right]}{u_{1}\left[r_{m_{i}} a_{m_{i}}+e \bar{w}, j\left(r_{m_{i}} a_{m_{i}}+e \bar{w}, e w\left(r_{m_{i}}\right)\right)\right]} \\
& \geq \frac{1}{\beta\left(1+r_{0}+\epsilon\right)}>1,
\end{aligned}
$$

since E is a finite set. Therefore, we have

$$
\limsup _{c \rightarrow \infty} \Psi(c, e \bar{w}) \geq \frac{1}{\beta\left(1+r_{0}+\epsilon\right)}>1,
$$

which contradicts Case B) of Assumption 5.
Consequently, we know that there exists $\varepsilon>0$ and $0<k^{M}\left(r_{0}\right)<\infty$ for $r_{0} \in(-1, \bar{r})$ such that

$$
a^{\prime}(a, e ; r)<a, \forall e \in E, \forall a \geq k^{M}\left(r_{0}\right),
$$

for all $r \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)$. From Propoposition 8 and the definiton of \bar{a} in Equation (11), we know that $\bar{a}(r)<k^{M}\left(r_{0}\right)$, for $r \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)$. For all $r \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)$, we find a uniform upper bound $k^{M}\left(r_{0}\right)$ for asset accumulation such that $[0, \bar{a}(r)] \subset\left[0, k^{M}\left(r_{0}\right)\right]$.

Now we extend measure $\mu(r)$ from $[0, \bar{a}(r)] \times E$ to $\left[0, k^{M}\left(r_{0}\right)\right] \times E$. The unique stationary distribution on $\left[0, k^{M}\left(r_{0}\right)\right] \times E$ is constructed by combining the stationary distribution $\mu(r)$ on $[0, \bar{a}(r)] \times E$ and zero measure on $\left(\bar{a}(r), k^{M}\left(r_{0}\right)\right] \times E$. Without causing confusion, I still use $\mu(r)$ to represent the unique stationary distribution with extended support. Now the collection of the extended measure, $\left\{\mu(r): r \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)\right\}$, has common bounded support $\left[0, k^{M}\left(r_{0}\right)\right] \times E$.

1.23 Proof of Theorem 6

Proof: From Lemma 7, we know that there exists $k^{M}\left(r_{0}\right)$ for each $r_{0} \in(-1, \bar{r})$, such that $\left[0, k^{M}\left(r_{0}\right)\right] \times E$ containing $S=[0, \bar{a}(r)] \times E$ for all $r \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)$. Thus, $\left[0, k^{M}\left(r_{0}\right)\right] \times E$ is a common bounded support for $\left\{\mu(r): r \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)\right\}$, and $\mu(r)$ is the unique stationary distribution on $\left[0, k^{M}\left(r_{0}\right)\right] \times E$ for $r \in\left(r_{0}-\varepsilon, r_{0}+\right.$ ε). We use Theorem 12.13 presented by Stokey and Lucas (1989) to show that $\left\{\mu\left(r_{m}\right)\right\}_{m=1}^{\infty}$ converges weakly to $\mu\left(r_{0}\right)$ as $r_{m} \rightarrow r_{0}$.

Verification of Conditions (a), (b), and (c) of Theorem 12.13 posited by Stokey and Lucas (1989)

Condition (a) is satisfied since $\left[0, k^{M}\left(r_{0}\right)\right] \times E$ is compact.
For sequence $\left\{\left(s_{m}, r_{m}\right)\right\}_{m=1}^{\infty}$ where $s_{m}=\left(a_{m}, e_{m}\right)$, suppose that $\left(s_{m}, r_{m}\right) \rightarrow$
$\left(s_{0}, r_{0}\right)$, where $s_{0}=\left(a_{0}, e_{0}\right)$, as $m \rightarrow \infty$. For any bounded continuous function f on $\left[0, k^{M}\left(r_{0}\right)\right] \times E$, we have

$$
\begin{aligned}
& \int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} f\left(s^{\prime}\right) P_{r_{m}}\left(s_{m}, s^{\prime}\right) \\
= & \int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} f\left(a^{\prime}, e^{\prime}\right) P_{r_{m}}\left[\left(a_{m}, e_{m}\right),\left(a^{\prime}, e^{\prime}\right)\right] \\
= & \int_{E} f\left[a^{\prime}\left(a_{m}, e_{m} ; r_{m}\right), e^{\prime}\right] P\left(e_{m}, e^{\prime}\right) \\
= & \sum_{i=1}^{n} f\left[a^{\prime}\left(a_{m}, e_{m} ; r_{m}\right), e^{i}\right] \pi\left(e^{i} \mid e_{m}\right),
\end{aligned}
$$

since $P\left(e_{m}, e^{\prime}\right)=\pi\left(e^{\prime} \mid e_{m}\right)$ for all $e^{\prime} \in E$ by Assumption 4. We have $e_{m}=e_{0}$ for all large enough $m^{\prime} s$ since E is a finite set. Thus, we have

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} f\left(s^{\prime}\right) P_{r_{m}}\left(s_{m}, s^{\prime}\right) \\
= & \lim _{m \rightarrow \infty} \sum_{i=1}^{n} f\left[a^{\prime}\left(a_{m}, e_{m} ; r_{m}\right), e^{i}\right] \pi\left(e^{i} \mid e_{m}\right) \\
= & \lim _{m \rightarrow \infty} \sum_{i=1}^{n} f\left[a^{\prime}\left(a_{m}, e_{0} ; r_{m}\right), e^{i}\right] \pi\left(e^{i} \mid e_{0}\right) \\
= & \sum_{i=1}^{n} f\left[a^{\prime}\left(a_{0}, e_{0} ; r_{0}\right), e^{i}\right] \pi\left(e^{i} \mid e_{0}\right),
\end{aligned}
$$

where the last line uses that fact that $f\left[a^{\prime}\left(a, e_{0} ; r\right), e^{i}\right]$ is a continuous function of (a, r) for all $1 \leq i \leq n$. This is true since $f\left(a^{\prime}, e^{\prime}\right)$ is continuous in $\left(a^{\prime}, e^{\prime}\right)$ and, due to Proposition 12, $a^{\prime}(a, e ; r)$ is a continuous function of (a, e, r). Therefore, we have

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \int_{\left[0, k^{\mu}\left(r_{0}\right)\right] \times E} f\left(s^{\prime}\right) P_{r_{m}}\left(s_{m}, s^{\prime}\right) \\
= & \sum_{i=1}^{n} f\left[a^{\prime}\left(a_{0}, e_{0} ; r_{0}\right), e^{i}\right] \pi\left(e^{i} \mid e_{0}\right) \\
= & \int_{E} f\left[a^{\prime}\left(a_{0}, e_{0} ; r_{0}\right), e^{\prime}\right] P\left(e_{0}, e^{\prime}\right) \\
= & \int_{\left[0, k^{M}\left(r_{0}\right)\right] \times E} f\left(a^{\prime}, e^{\prime}\right) P_{r_{0}}\left[\left(a_{0}, e_{0}\right),\left(a^{\prime}, e^{\prime}\right)\right] \\
= & \int_{\left[0, k^{M}\left(r_{0}\right)\right] \times E} f\left(s^{\prime}\right) P_{r_{0}}\left(s_{0}, s^{\prime}\right) .
\end{aligned}
$$

Thus, $\left\{P_{r_{m}}\left(s_{m}, \cdot\right)\right\}_{m=1}^{\infty}$ converges weakly to $P_{r_{0}}\left(s_{0}, \cdot\right)$. Condition (b) is satisfied.
Condition (c) is satisfied since $\mu\left(r_{m}\right)$ is the unique stationary distribution on $\left[0, k^{M}\left(r_{0}\right)\right] \times E$ for each $m \geq 1$.

Thus Theorem 12.13 posited by Stokey and Lucas (1989) implies that $\left\{\mu\left(r_{m}\right)\right\}_{m=1}^{\infty}$ converges weakly to $\mu\left(r_{0}\right)$ as $r_{m} \rightarrow r_{0}$. Thus, we have

$$
\lim _{m \rightarrow \infty} \int_{\left[0, k^{\mu}\left(r_{0}\right)\right] \times E} a d \mu\left(r_{m}\right)=\int_{\left[0, k^{\mu}\left(r_{0}\right)\right] \times E} a d \mu\left(r_{0}\right) .
$$

We know that $\int_{\left[0, k^{\mu}\left(r_{0}\right)\right] \times E} a d \mu(r)=\int_{S} a d \mu(r)=A(r)$ for all $r \in\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right)$ since $\mu\left(\left(\bar{a}(r), k^{M}\left(r_{0}\right)\right] \times E\right)=0$. Therefore, we have $\lim _{m \rightarrow \infty} A\left(r_{m}\right)=A\left(r_{0}\right)$.

Since $\mu\left(\left(\bar{a}(r), k^{M}\left(r_{0}\right)\right] \times E\right)=0$, we have

$$
\begin{aligned}
L\left(r_{m}\right) & =\int_{S} e\left[1-h\left(s ; r_{m}\right)\right] d \mu\left(r_{m}\right) \\
& =\int_{\left[0, k^{\mu}\left(r_{0}\right)\right] \times E} e\left[1-h\left(s ; r_{m}\right)\right] d \mu\left(r_{m}\right) \\
& =\int_{\left[0, k^{\mu}\left(r_{0}\right)\right] \times E} e d \mu\left(r_{m}\right)-\int_{\left[0, k^{M}\left(r_{0}\right)\right] \times E} e h\left(s ; r_{m}\right) d \mu\left(r_{m}\right) .
\end{aligned}
$$

The first term $\int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} e d \mu\left(r_{m}\right)$ converges to $\int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} e d \mu\left(r_{0}\right)$ as $r_{m} \rightarrow r_{0}$, since $\mu\left(r_{m}\right)$ converges weakly to $\mu\left(r_{0}\right)$ as $r_{m} \rightarrow r_{0}$. We only need to show that $\int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} \operatorname{eh}\left(s ; r_{m}\right) d \mu\left(r_{m}\right) \rightarrow \int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} \operatorname{eh}\left(s ; r_{0}\right) d \mu\left(r_{0}\right)$ as $r_{m} \rightarrow r_{0}$. For fixed $e \in E, h\left(a, e ; r_{m}\right)$ is a function on $\left[0, k^{M}\left(r_{0}\right)\right]$. By part 1) of Proposition 3, Lemma 6, and Proposition 12, $h\left(a, e ; r_{m}\right)$ uniformly converges to $h\left(a, e ; r_{0}\right)$ as $r_{m} \rightarrow r_{0}$. Thus, for $\delta>0$, we have

$$
\max _{a \in\left[0, k^{M}\right]}\left|h\left(a, e ; r_{m}\right)-h\left(a, e ; r_{0}\right)\right|<\frac{\delta}{2 e^{n}}, \forall e \in E,
$$

for sufficiently large m. Therefore, we have

$$
\max _{(a, e) \in\left[0, k^{n}\right] \times E}\left\{e\left|h\left(a, e ; r_{m}\right)-h\left(a, e ; r_{0}\right)\right|\right\}<\frac{\delta}{2},
$$

for sufficiently large m. We also have

$$
\left|\int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} e h\left(a, e ; r_{0}\right) d \mu\left(r_{m}\right)-\int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} e h\left(a, e ; r_{0}\right) d \mu\left(r_{0}\right)\right|<\frac{\delta}{2},
$$

for sufficiently large m, since $e h\left(a, e ; r_{0}\right)$ is a bounded continuous function on $\left[0, k^{M}\right] \times E$ and $\mu\left(r_{m}\right)$ converges weakly to $\mu\left(r_{0}\right)$ as $r_{m} \rightarrow r_{0}$. Thus, we have

$$
\begin{aligned}
& \left|\int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} e h\left(a, e ; r_{m}\right) d \mu\left(r_{m}\right)-\int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} e h\left(a, e ; r_{0}\right) d \mu\left(r_{0}\right)\right| \\
\leq & \left|\int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} e h\left(a, e ; r_{m}\right) d \mu\left(r_{m}\right)-\int_{\left[0, k^{m}\left(r_{0}\right)\right] \times E} e h\left(a, e ; r_{0}\right) d \mu\left(r_{m}\right)\right| \\
& +\left|\int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} e h\left(a, e ; r_{0}\right) d \mu\left(r_{m}\right)-\int_{\left[0, k^{M}\left(r_{0}\right)\right] \times E} e h\left(a, e ; r_{0}\right) d \mu\left(r_{0}\right)\right| \\
\leq & \int_{\left[0, k^{\mu}\left(r_{0}\right)\right] \times E} e\left|h\left(a, e ; r_{m}\right)-h\left(a, e ; r_{0}\right)\right| d \mu\left(r_{m}\right) \\
& +\left|\int_{\left[0, k^{\mu}\left(r_{0}\right)\right] \times E} e h\left(a, e ; r_{0}\right) d \mu\left(r_{m}\right)-\int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} e h\left(a, e ; r_{0}\right) d \mu\left(r_{0}\right)\right| \\
< & \int_{\left[0, k^{\mu}\left(r_{0}\right)\right] \times E} \frac{\delta}{2} d \mu\left(r_{m}\right)+\frac{\delta}{2} \\
= & \frac{\delta}{2}+\frac{\delta}{2}=\delta,
\end{aligned}
$$

for sufficiently large m. Thus we know that $\int_{\left[0, k^{M}\left(r_{0}\right)\right] \times E} e h\left(s ; r_{m}\right) d \mu\left(r_{m}\right) \rightarrow \int_{\left[0, k^{n}\left(r_{0}\right)\right] \times E} e h\left(s ; r_{0}\right) d \mu\left(r_{0}\right)$ as $r_{m} \rightarrow r_{0}$. Therefore, $\lim _{m \rightarrow \infty} L\left(r_{m}\right)=L\left(r_{0}\right)$.

1.24 Proof of Proposition 13

Proof: From Proposition11, we have $\mu_{r}(\{(a, e): a=0\})>0$ for $r \in(-1, \bar{r})$. By Assumption 2 we know that $h(0, e ; r)<1$ for all $e \in E$. Thus, $L(r)>0$ for $r \in(-1, \bar{r})$. Since

$$
\zeta(r)=\frac{A(r)}{L(r)}
$$

we know that $\zeta(r)$ is a continuous function of $r \in(-1, \bar{r})$.
From Proposition 6 we know that either $\operatorname{Pr}\left(\lim _{t \rightarrow \infty} a_{t}=\infty\right)=1$ or $\operatorname{Pr}\left(\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}\right.$ is bounded $)=$ 1 for $\beta R=1$. We discuss the limit of $\zeta(r)$ as $r \uparrow \bar{r}$ in these two situations.

$$
\operatorname{Pr}\left(\lim _{t \rightarrow \infty} a_{t}=\infty\right)=1 \text { for } \beta R=1 .
$$

In this case we want to show that $\lim _{r \uparrow \bar{r}} A(r)=\infty$. Suppose that this is not true. Then there exists $B>0$ and sequence $\left\{r_{m}\right\}_{m=1}^{\infty}$ such that $r_{m} \uparrow \bar{r}$ and
$A\left(r_{m}\right)<B$ for all $m \geq 1$. Thus, for any $\hat{k}>0$, we have

$$
\begin{aligned}
& \hat{k} \mu_{r_{m}}\{(a, e): a>\hat{k}\} \\
\leq & \int_{(\hat{k}, \infty) \times E} a d \mu\left(r_{m}\right) \\
\leq & \int_{[0, \infty) \times E} a d \mu\left(r_{m}\right) \\
= & \int_{S} a d \mu\left(r_{m}\right) \\
= & A\left(r_{m}\right) \\
< & B
\end{aligned}
$$

for all $m \geq 1$. Thus, we have

$$
\mu_{r_{m}}\{(a, e): a>\hat{k}\}<\frac{B}{\hat{k}}, \forall m \geq 1 .
$$

We thus know that $\left\{\mu\left(r_{m}\right)\right\}_{m=1}^{\infty}$ is tight. Condition (d) of Theorem 7 holds.
Conditions (a) and (c) of Theorem 7 obviously hold. We can also verify condition (b) of Theorem 7, using the same procedure as that in Proof of Theorem 6. For sequence $\left\{\left(x_{m}, r_{m}\right)\right\}_{m=1}^{\infty}$ where $x_{m}=\left(a_{m}, e_{m}\right)$, suppose that $\lim _{m \rightarrow \infty} x_{m}=x_{0}=\left(a_{0}, e_{0}\right)$ and $r_{m} \uparrow \bar{r}$. For any bounded continous function f on $[0, \infty) \times E$, we have

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \int_{[0, \infty) \times E} f\left(x^{\prime}\right) P_{r_{m}}\left(x_{m}, x^{\prime}\right) \\
= & \sum_{i=1}^{n} f\left[a^{\prime}\left(a_{0}, e_{0} ; \bar{r}\right), e^{i}\right] \pi\left(e^{i} \mid e_{0}\right) \\
= & \int_{E} f\left[a^{\prime}\left(a_{0}, e_{0} ; \bar{r}\right), e^{\prime}\right] P\left(e_{0}, e^{\prime}\right) \\
= & \int_{[0, \infty) \times E} f\left(a^{\prime}, e^{\prime}\right) P_{\bar{r}}\left[\left(a_{0}, e_{0}\right),\left(a^{\prime}, e^{\prime}\right)\right] \\
= & \int_{[0, \infty) \times E} f\left(x^{\prime}\right) P_{\bar{r}}\left(x_{0}, x^{\prime}\right) .
\end{aligned}
$$

Thus, $\left\{P_{r_{m}}\left(x_{m}, \cdot\right)\right\}_{m=1}^{\infty}$ converges weakly to $P_{\bar{r}}\left(x_{0}, \cdot\right)$. Condition (b) is satisfied.

Thus, from Theorem 7, we know that there exists a subsequence $\left\{r_{m_{i}}\right\}_{i=1}^{\infty}$ and a proability measure $\hat{\mu}$ such that $\left\{\mu\left(r_{m_{i}}\right)\right\}_{i=1}^{\infty}$ converges weakly to $\hat{\mu}$ and $\hat{\mu}$ is a stationary distribution for $P_{\bar{r}}(\cdot, \cdot)$ on $[0, \infty) \times E$. This contradicts $\operatorname{Pr}\left(\lim _{t \rightarrow \infty} a_{t}=\right.$ $\infty)=1$ for $\beta R=1$.
$\operatorname{Pr}\left(\left\{\left(a_{t}, e_{t}\right)\right\}_{t=0}^{\infty}\right.$ is bounded $)=1$ for $\beta R=1$.
In this case, Proposition 6 implies that there exists $\bar{k}(\bar{r})<\infty$ such that $h(a, e)=1$ for $a \geq \bar{k}(\bar{r})$ and $e \in E$. Following the same procedure as that in the first part of Proof of Lemma 7, we pick a sufficiently large $k^{M}(\bar{r})>\bar{k}(\bar{r})$ such that

$$
\frac{u_{2}\left[c\left(k^{M}(\bar{r}), e ; \bar{r}\right), 1\right]}{u_{1}\left[c\left(k^{M}(\bar{r}), e ; \bar{r}\right), 1\right]}>e w, \forall e \in E .
$$

From Proposition 12, we know that $c(a, e ; r)$ is continuous in r at \bar{r}. Therefore, we could find $\varepsilon>0$ such that, for $r \in(\bar{r}-\varepsilon, \bar{r})$, we have

$$
\frac{u_{2}\left[c\left(k^{M}(\bar{r}), e ; r\right), 1\right]}{u_{1}\left[c\left(k^{M}(\bar{r}), e ; r\right), 1\right]}>e w, \forall e \in E .
$$

Thus we have $h\left[k^{M}\left(r_{0}\right), e ; r\right]=1$ for all $e \in E$. By the definition of \bar{k} in Equation (6), we know that $\bar{k}(r) \leq k^{M}(\bar{r})$, for $r \in(\bar{r}-\varepsilon, \bar{r})$. From Proposition 7 and the definition of \bar{a} in Equation (11), we know that $\bar{a}(r)<\bar{k}(r)$, for $r \in(-1, \bar{r})$. Thus, $\bar{a}(r)<\bar{k}(r)<k^{M}\left(r_{0}\right)$, for $r \in(\bar{r}-\varepsilon, \bar{r})$. For all $r \in(\bar{r}-\varepsilon, \bar{r})$, we find a uniform upper bound $k^{M}(\bar{r})$ for asset accumulation such that $[0, \bar{a}(r)] \subset\left[0, k^{M}(\bar{r})\right]$. We then use the same procedure as that in Proof of Lemma 7 to extend measure $\mu(r)$ on $[0, \bar{a}(r)] \times E$ to $\left[0, k^{M}(\bar{r})\right] \times E$. The unique stationary distribution on $\left[0, k^{M}(\bar{r})\right] \times E$ is constructed by combining the stationary distribution $\mu(r)$ on $[0, \bar{a}(r)] \times E$ and zero measure on $\left(\bar{a}(r), k^{M}(\bar{r})\right] \times E$. The collection of the extended measure, $\{\mu(r): r \in(\bar{r}-\varepsilon, \bar{r})\}$, has common bounded support $\left[0, k^{M}(\bar{r})\right] \times E$. For squence $\left\{r_{m}\right\}_{m=1}^{\infty}$ such that $r_{m} \uparrow \bar{r}$, without loss of generality, we assume that $r_{m} \in(\bar{r}-\varepsilon, \bar{r})$ for all $m \geq 1$. Since $\left[0, k^{M}(\bar{r})\right] \times E$ is bounded, we know that $\left\{\mu\left(r_{m}\right)\right\}_{m=1}^{\infty}$ is tight. Condition (d) of Thoerem 7 holds.

Conditions (a) and (c) of Theorem 7 obviously hold. We can also verify condition (b) of Theorem 7 as above. Thus Thereom 7 implies that there exists a subsequence $\left\{r_{m_{i}}\right\}_{i=1}^{\infty}$ such that $\left\{\mu\left(r_{m_{i}}\right\}_{i=1}^{\infty}\right.$ on $\left[0, k^{M}(\bar{r})\right] \times E$ converges weakly to a stationary distribution $\mu(\bar{r})$ on $\left[0, k^{M}(\bar{r})\right] \times E$. Moreover, we know that $\lim _{t \rightarrow \infty} h_{t}=1$ almost surely in this case. Even though there could be infinitely many stationary distributions on $\left[0, k^{M}(\bar{r})\right] \times E$ for \bar{r}, we have $\mu_{\bar{r}}(\{(a, e)$: $h(a, e)=1\})=1$ for any stationary distribution $\mu(\bar{r})$ on $\left[0, k^{M}(\bar{r})\right] \times E$. Following the same procedure as that in Proof of Theorem 6, we have

$$
\begin{aligned}
\lim _{i \rightarrow \infty} L\left(r_{m_{i}}\right) & =\lim _{i \rightarrow \infty} \int_{S} e\left[1-h\left(s ; r_{m_{i}}\right)\right] d \mu\left(r_{m_{i}}\right) \\
& =\lim _{i \rightarrow \infty} \int_{\left[0, k^{M}(\bar{r})\right] \times E} e\left[1-h\left(s ; r_{m_{i}}\right)\right] d \mu\left(r_{m_{i}}\right) \\
& =\int_{\left[0, k^{M}(\bar{r})\right] \times E} e[1-h(s ; \bar{r})] d \mu(\bar{r})=0,
\end{aligned}
$$

We know from Proposition 5 that $\lim _{t \rightarrow \infty} a_{t}=\bar{k}(\bar{r})>0$ if $a_{0} \in[0, \bar{k}(\bar{r})]$, and $a_{t}=a_{0}$ for all $t \geq 0$ if $a_{0}>\bar{k}(\bar{r})$. Consequently, we have $\mu_{\bar{r}}(\{(a, e): a>0\})>0$. Thus,

$$
\begin{aligned}
\lim _{i \rightarrow \infty} A\left(r_{m_{i}}\right)=\lim _{i \rightarrow \infty} \int_{S} a d \mu\left(r_{m_{i}}\right) & =\lim _{i \rightarrow \infty} \int_{\left[0, k^{M}(\bar{r})\right] \times E} a d \mu\left(r_{m_{i}}\right) \\
& =\int_{\left[0, k^{M}(\bar{r})\right] \times E} a d \mu(\bar{r})>0 .
\end{aligned}
$$

Therefore, we know that $\lim _{r \uparrow \bar{r}} L(r)=0$ and $\liminf _{r \uparrow \bar{r}} A(r)>0$.
Finally, we have

$$
\lim _{r \uparrow \bar{r}} \zeta(r)=\lim _{r \bar{\uparrow} \bar{r}} \frac{A(r)}{L(r)}=\infty .
$$

1.25 Proof of Theorem 8

Proof: From Proposition 13 we know that $\zeta(r)$ is a continuous function of $r \in$ $(-1, \bar{r})$. We also know that

$$
\lim _{r \uparrow \bar{T}} \zeta(r)=\infty .
$$

The firm's profit-maximization problem gives us a downward continuous curve of $D(r)=\frac{K}{L}(r)$. Thus, we have

$$
\lim _{r \downarrow-\delta} D(r)=\infty,
$$

and

$$
\lim _{\frac{\Sigma}{L} \downarrow 0} r=\infty .
$$

There thus exists at least an intersection of these two curves. Additionally, we know that $-\delta<r<\bar{r}$ and $\frac{K}{L}>0$ in the stationary equilibrium.

2 Appendix B

2.1 Proof of Proposition 8

Proof: If Case ii) of Assumption 2 holds, $r \leq 0$ implies that $c(a, e)>0 \geq r a$ for $a \geq 0$ and all $e \in E$. We know that $c(a, e) \geq r a$ for $r>0$, from Proposition 2 posited by Acikgöz (2018). From Proposition 4 posited by Acikgöz (2018), we also know that there exists $k^{b}>0$ such that $a^{\prime}(a, e)<a$ for $a \geq k^{b}$ and all $e \in E$.

Next I will concentrate on Case i) of Assumption 2. ${ }^{5}$ If the borrowing constraint is binding, the indirect utility function $J(R a+e w, e w)$ of the intratemporal problem is

$$
J(R a+e w, e w)=\max _{c, h} u(c, h)
$$

[^2]$$
\text { s.t. } c+\text { hew }=R a+e w, h \in[0,1] .
$$

The optimal solutions of this problem are $c^{s}(R a+e w, e w)$ and $h^{s}(R a+e w, e w)$. We define

$$
\psi(a, e)=u_{1}\left[c^{s}(R a+e w, e w), h^{s}(R a+e w, e w)\right],
$$

for $(a, e) \in \mathbb{R}_{+} \times E$.
If Case i) of Assumption 2 holds, for $q>0$, there exists function $\varphi(c, q)$ such that

$$
u_{2}[c, \varphi(c, q)]=u_{1}[c, \varphi(c, q)] q,
$$

by the Implicit Function Theorem. We also know that $\frac{\partial \varphi(c, q)}{\partial c}=\frac{u_{2} u_{1}-u_{11} u_{2}}{u_{12} u_{2}-u_{22} u_{1}}>0$ for $c>0$. For $q>0$, let

$$
\sigma_{1}(q)=\left\{\begin{array}{cc}
\infty, & \text { if } \Upsilon(q) \text { is empty } \\
\inf \Upsilon(q), & \text { if } \Upsilon(q) \text { is not empty }
\end{array},\right.
$$

where $\Upsilon(q)=\{c>0: \varphi(c, q) \geq 1\}$. Therefore, we have

$$
j(c, q)=\left\{\begin{array}{cc}
\varphi(c, q), & c \in\left(0, \sigma_{1}(q)\right] \\
1, & c \in\left(\sigma_{1}(q), \infty\right)
\end{array}\right.
$$

and

$$
\Phi(c, q)=u_{1}[c, j(c, q)]=\left\{\begin{array}{cc}
u_{1}[c, \varphi(c, q)], & c \in\left(0, \sigma_{1}(q)\right] \\
u_{1}(c, 1), & c \in\left(\sigma_{1}(q), \infty\right)
\end{array} .\right.
$$

For $(a, e) \in \mathbb{R}_{+} \times E$, we also observe that

$$
\begin{gathered}
h^{s}(R a+e w, e w)=j\left[c^{s}(R a+e w, e w), e w\right], \\
R a-c^{s}(R a+e w, e w)+\left(1-j\left[c^{s}(R a+e w, e w), e w\right]\right) e w=0,
\end{gathered}
$$

and

$$
\begin{aligned}
& \Phi\left[c^{s}(R a+e w, e w), e w\right] \\
= & u_{1}\left[c^{s}(R a+e w, e w), j\left[c^{s}(R a+e w, e w), e w\right]\right] \\
= & u_{1}\left[c^{s}(R a+e w, e w), h^{s}(R a+e w, e w)\right] \\
= & \psi(a, e) .
\end{aligned}
$$

Thus, we have $\psi(a, e)=\Phi\left[c^{s}(R a+e w, e w), e w\right] \leq \Phi\left[c^{s}(e w, e w), e w\right]=\psi(0, e)<$ ∞ for $(a, e) \in \mathbb{R}_{+} \times E$.

Let \mathcal{L} be the set of functions $c: \mathbb{R}_{+} \times E \rightarrow \mathbb{R}_{+}$such that $c(a, e)$ is increasing in $a, 0<c(a, e) \leq c^{s}(R a+e w, e w)$, and

$$
\sup _{(a, e) \in \mathbb{R}_{+} \times E}|\Phi[c(a, e), e w]-\psi(a, e)|<\infty .
$$

For any $c \in \mathcal{L}$, we have

$$
\begin{aligned}
& \sup _{(a, e) \in \mathbb{R}^{\prime} \times E} \Phi[c(a, e), e w] \\
\leq & \sup _{(a, e) \in \mathbb{R}^{+} \times E} \psi(a, e)+\sup _{(a, e) \in \mathbb{R}^{+} \times E}|\Phi[c(a, e), e w]-\psi(a, e)| \\
\leq & \max _{e \in E}\{\psi(0, e)\}+\sup _{(a, e) \in \mathbb{R}_{+} \times E}|\Phi[c(a, e), e w]-\psi(a, e)| \\
< & \infty .
\end{aligned}
$$

Thus, $\Phi[c(a, e), e w]$ is a bounded function of $(a, e) \in \mathbb{R}_{+} \times E$.
Define operator K on \mathcal{L} by

$$
\begin{aligned}
& \Phi[K c(a, e), e w] \\
= & \max \left\{\beta R E\left[\Phi\left(c\left(R a-K c(a, e)+(1-j(K c(a, e), e w)) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right], \psi(a, e)\right\} .
\end{aligned}
$$

Claim Cl: For $q>0, \Phi(c, q)$ is strictly decreasing in $c \in(0, \infty)$.
Proof of Claim C1: For $0<c<\sigma_{1}(q)$, we have $j(c, q)=\varphi(c, q)$. Thus,

$$
\begin{aligned}
\frac{\partial \Phi(c, q)}{\partial c} & =u_{11}+u_{12} \frac{\partial \varphi(c, q)}{\partial c} \\
& =u_{11}+u_{12} \frac{u_{21} u_{1}-u_{11} u_{2}}{u_{12} u_{2}-u_{22} u_{1}} \\
& =-u_{1} \frac{u_{11} u_{22}-u_{21} u_{12}}{u_{12} u_{2}-u_{22} u_{1}}<0 .
\end{aligned}
$$

For $0<c_{1}<\sigma_{1}(e)<c_{2}$, we have $j\left(\sigma_{1}(q), q\right)=j\left(c_{2}, q\right)=1$. Thus,

$$
\begin{aligned}
\Phi\left(c_{1}, q\right) & >\Phi\left(\sigma_{1}(q), q\right) \\
& =u_{1}\left[\sigma_{1}(q), j\left(\sigma_{1}(q), q\right)\right] \\
& =u_{1}\left[\sigma_{1}(q), 1\right] \\
& >u_{1}\left[c_{2}, 1\right] \\
& =u_{1}\left[c_{2}, j\left(c_{2}, q\right)\right]=\Phi\left(c_{2}, q\right)
\end{aligned}
$$

For $c>\sigma_{1}(q)$, we have $j(c, q)=1$ and $\Phi(c, q)=u_{1}(c, 1)$. Thus,

$$
\frac{\partial \Phi(c, q)}{\partial c}=u_{11}(c, 1)<0 .
$$

Therefore, for $0<c_{1}<c_{2}$, we have $\Phi\left(c_{1}, q\right)>\Phi\left(c_{2}, q\right)$.
From Claim C1 we know that $\psi(a, e)=\Phi\left[c^{s}(R a+e w, e w), e w\right]$ is decreasing in a.

Claim C2: For $c \in \mathcal{L}, K c$ is a well-defined function and $K c \in \mathcal{L}$.
Proof of Claim C2: Fix $(a, e) \in \mathbb{R}_{+} \times E$ and $c \in \mathcal{L}$. Let

$$
\Pi(x)=\max \left\{\beta R E\left[\Phi\left(c\left(R a-x+(1-j(x, e w)) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right], \psi(a, e)\right\}
$$

for $0<x \leq c^{s}(R a+e w, e w)$. Thus, $\Pi(x) \geq \psi(a, e)$ for $0<x \leq c^{s}(R a+e w, e w)$. Furthermore, $\Pi(x)$ is increasing in x since we know that $\Phi(x$, ew $)$ is decreasing in x from Claim C1. We also know that $\Phi(x, e w)$ is strictly decreasing in x, $\lim _{x \rightarrow 0} \Phi(x, e w)=\lim _{x \rightarrow 0} u_{1}[x, \varphi(x, e w)]=\infty$, and $\Phi\left(c^{s}(R a+e w, e w), e w\right)=$ $\psi(a, e)$. Thus, we have a unique solution $0<x^{*} \leq c^{s}(R a+e w, e w)$ for the quation

$$
\Phi(x, e w)=\Pi(x) .
$$

Let $K c(a, e)=x^{*}$. Thus, $K c$ is a well-defined function.
We know that $0<K c(a, e) \leq c^{s}(R a+e w, e w)$ since $0<x^{*} \leq c^{s}(R a+e w, e w)$. To show that $K c(a, e)$ is increasing in a, we suppose that $K c\left(a_{1}, e\right)>K c\left(a_{2}, e\right)$
for $0 \leq a_{1}<a_{2}$. Thus,

$$
\begin{aligned}
& \Phi\left[K c\left(a_{1}, e\right), e w\right] \\
< & \Phi\left[K c\left(a_{2}, e\right), e w\right] \\
= & \max \left\{\beta R E\left[\Phi\left(c\left(R a_{2}-K c\left(a_{2}, e\right)+\left(1-j\left(K c\left(a_{2}, e\right), e w\right)\right) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right], \psi\left(a_{2}, e\right)\right\} \\
\leq & \max \left\{\beta R E\left[\Phi\left(c\left(R a_{1}-K c\left(a_{1}, e\right)+\left(1-j\left(K c\left(a_{1}, e\right), e w\right)\right) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right], \psi\left(a_{1}, e\right)\right\} \\
= & \Phi\left[K c\left(a_{1}, e\right), e w\right] .
\end{aligned}
$$

We have a contradiction. Therefore, $K c\left(a_{1}, e\right) \leq K c\left(a_{2}, e\right)$.
From $\psi(a, e)=\Phi\left[c^{s}(R a+e w, e w), e w\right]$ we have $\psi(0, e)=\Phi\left[c^{s}(e w, e w), e w\right]=$ $u_{1}\left[c^{s}(e w, e w), h^{s}(e w, e w)\right]<\infty$. We also know that $\Phi[K c(a, e), e w] \geq \psi(a, e)$. Thus

$$
\begin{aligned}
& |\Phi[K c(a, e), e w]-\psi(a, e)| \\
= & \Phi[K c(a, e), e w]-\psi(a, e) \\
\leq & \max \left\{E\left[\Phi\left(c\left(R a-K c(a, e)+(1-j(K c(a, e), e w)) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right], \psi(a, e)\right\}-\psi(a, e) \\
\leq & \max \left\{E\left[\Phi\left(c\left(0, e^{\prime}\right), e^{\prime} w\right) \mid e\right], \psi(a, e)\right\}-\psi(a, e) \\
\leq & \max \left\{E\left[\Phi\left(c\left(0, e^{\prime}\right), e^{\prime} w\right) \mid e\right]-\psi(a, e), 0\right\} \\
\leq & E\left[\Phi\left(c\left(0, e^{\prime}\right), e^{\prime} w\right) \mid e\right] \\
\leq & \sup _{(a, e) \in \mathbb{R}_{+} \times E}|\Phi[c(a, e), e w]-\psi(a, e)|+\max _{e \in E}\{\psi(0, e)\} \\
< & \infty .
\end{aligned}
$$

Therefore, we have

$$
\sup _{(a, e) \in \mathbb{R}_{+} \times E}|\Phi[K c(a, e), e w]-\psi(a, e)|<\infty .
$$

For $c, d \in \mathcal{L}$, define

$$
\rho(c, d)=\sup _{(a, e) \in \mathbb{R}_{+} \times E}|\Phi[c(a, e), e w]-\Phi[d(a, e), e w]| .
$$

Thus, we have $\rho(c, d) \geq 0$. We also know that

$$
\begin{aligned}
\rho(c, d) & =\sup _{(a, e) \in \mathbb{R}_{+} \times E}|\Phi[c(a, e), e w]-\Phi[d(a, e), e w]| \\
& \leq \sup _{(a, e) \in \mathbb{R}_{+} \times E}|\Phi[c(a, e), e w]-\psi(a, e)|+\sup _{(a, e) \in \mathbb{R}_{+} \times E}|\Phi[d(a, e), e w]-\psi(a, e)| \\
& <\infty .
\end{aligned}
$$

Apparently, $\rho(c, d)=\rho(c, d)$. If $\rho(c, d)=0$, we have

$$
\Phi[c(a, e), e w]=\Phi[d(a, e), e w], \forall(a, e) \in \mathbb{R}_{+} \times E .
$$

Thus,

$$
c(a, e)=d(a, e), \forall(a, e) \in \mathbb{R}_{+} \times E,
$$

since we know that $\Phi(c, q)$ is strictly decreasing in $c \in(0, \infty)$ from Claim C1. For $b, c, d \in \mathcal{L}$, we have

$$
\begin{aligned}
\rho(b, d)= & \sup _{(a, e) \in \mathbb{R}_{+} \times E}|\Phi[b(a, e), e w]-\Phi[d(a, e), e w]| \\
\leq & \sup _{(a, e) \in \mathbb{R}_{+} \times E}|\Phi[b(a, e), e w]-\Phi[c(a, e), e w]| \\
& +\sup _{(a, e) \in \mathbb{R}_{+} \times E}|\Phi[c(a, e), e w]-\Phi[d(a, e), e w]| \\
= & \rho(b, c)+\rho(c, d) .
\end{aligned}
$$

Therefore, (\mathcal{L}, ρ) is a metric space.
Claim C3: Metric space (\mathcal{L}, ρ) is complete.
Proof of Claim C3: Suppose that $\left\{c_{m}\right\}_{m=1}^{\infty}$ is a Cauchy sequence in (\mathcal{L}, ρ). Thus, for each $(a, e) \in \mathbb{R}_{+} \times E$, $\left\{\Phi\left[c_{m}(a, e), e w\right]\right\}_{m=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} and it has a finite limit $t(a, e)$. For $\varepsilon>0$, we choose M_{ε} such that $m, n \geq M_{\varepsilon}$ implies that $\rho\left(c_{m}, c_{n}\right)<\frac{\varepsilon}{2}$, since $\left\{c_{m}\right\}_{m=1}^{\infty}$ is a Cauchy sequence in (\mathcal{L}, ρ). For
each $(a, e) \in \mathbb{R}_{+} \times E$ and $m, n \geq M_{\varepsilon}$, we have

$$
\begin{aligned}
\left|\Phi\left[c_{m}(a, e), e w\right]-t(a, e)\right| \leq & \left|\Phi\left[c_{m}(a, e), e w\right]-\Phi\left[c_{n}(a, e), e w\right]\right| \\
& +\left|\Phi\left[c_{n}(a, e), e w\right]-t(a, e)\right| \\
\leq & \sup _{(a, e) \in \mathbb{R}_{+} \times E}\left|\Phi\left[c_{m}(a, e), e w\right]-\Phi\left[c_{n}(a, e), e w\right]\right| \\
& +\left|\Phi\left[c_{n}(a, e), e w\right]-t(a, e)\right| \\
\leq & \rho\left(c_{m}, c_{n}\right)+\left|\Phi\left[c_{n}(a, e), e w\right]-t(a, e)\right| \\
< & \frac{\varepsilon}{2}+\left|\Phi\left[c_{n}(a, e), e w\right]-t(a, e)\right| .
\end{aligned}
$$

Since $\lim _{m \rightarrow \infty} \Phi\left[c_{m}(a, e), e w\right]=t(a, e)$ for each $(a, e) \in \mathbb{R}_{+} \times E$, we can choose n separately for each fixed $(a, e) \in \mathbb{R}_{+} \times E$ such that $\left|\Phi\left[c_{n}(a, e), e w\right]-t(a, e)\right|<\frac{\varepsilon}{2}$. Therefore, we have

$$
\begin{equation*}
\sup _{(a, e) \in \mathbb{R}_{+} \times E}\left|\Phi\left[c_{m}(a, e), e w\right]-t(a, e)\right| \leq \varepsilon, \tag{A.13}
\end{equation*}
$$

for $m \geq M_{\varepsilon}$.
For each $(a, e) \in \mathbb{R}_{+} \times E$, we pick $c_{0}(a, e)>0$ such that

$$
\begin{equation*}
\Phi\left[c_{0}(a, e), e w\right]=t(a, e) \tag{A.14}
\end{equation*}
$$

Since $\Phi\left[c_{m}(a, e), e w\right] \geq \psi(a, e)=\Phi\left[c^{s}(R a+e w, e w), e w\right]$ for all $m \geq 1$, we have $t(a, e) \geq \psi(a, e)=\Phi\left[c^{s}(R a+e w, e w), e w\right]$. Thus we have $0<c_{0}(a, e) \leq$ $c^{s}(R a+e w, e w) . t(a, e)$ is decreasing in a since $\Phi\left[c_{m}(a, e), e w\right]$ is decreasing in a. Therefore, $c_{0}(a, e)$ is increasing in a. Combining Equations (A.13) and (A.14) we have

$$
\rho\left(c_{m}, c_{0}\right)=\sup _{(a, e) \in \mathbb{R}_{+} \times E}\left|\Phi\left[c_{m}(a, e), e w\right]-\Phi\left[c_{0}(a, e), e w\right]\right| \leq \varepsilon,
$$

for $m \geq M_{\varepsilon}$. Thus we have

$$
\begin{aligned}
& \sup _{(a, e) \in \mathbb{R}_{+} \times E}\left|\Phi\left[c_{0}(a, e), e w\right]-\psi(a, e)\right| \\
\leq & \sup _{(a, e) \in \mathbb{R}_{+} \times E}\left|\Phi\left[c_{0}(a, e), e w\right]-\Phi\left[c_{m}(a, e), e w\right]\right| \\
& +\sup _{(a, e) \in \mathbb{R}_{+} \times E}\left|\Phi\left[c_{m}(a, e), e w\right]-\psi(a, e)\right| \\
\leq & \varepsilon+\sup _{(a, e) \in \mathbb{R}_{+} \times E}\left|\Phi\left[c_{m}(a, e), e w\right]-\psi(a, e)\right| \\
< & \infty,
\end{aligned}
$$

since $c_{m} \in \operatorname{implies}$ that $\sup _{(a, e) \in \mathbb{R}_{+} \times E}\left|\Phi\left[c_{m}(a, e), e w\right]-\psi(a, e)\right|<\infty$. Thus, the Cauchy sequence $\left\{c_{m}\right\}_{m=1}^{\infty}$ converges to $c_{0} \in \mathcal{L}$. Therefore, (\mathcal{L}, ρ) is a complete metric space.

Claim C4: $\rho(K c, K d) \leq \beta R \rho(c, d)$ for all $c, d \in \mathcal{L}$.
Proof of Claim C4: Pick any $c, d \in$. For each $(a, e) \in \mathbb{R}_{+} \times E$, we have

$$
\begin{aligned}
& \Phi[K c(a, e), e w] \\
= & \max \left\{\beta R E\left[\Phi\left(c\left(R a-K c(a, e)+(1-j(K c(a, e), e w)) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right], \psi(a, e)\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
& \Phi[K d(a, e), e w] \\
= & \max \left\{\beta R E\left[\Phi\left(d\left(R a-K d(a, e)+(1-j(K d(a, e), e w)) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right], \psi(a, e)\right\} .
\end{aligned}
$$

Without loss of generality, we assume that $K c(a, e) \geq K d(a, e)$. Thus,

$$
\begin{aligned}
& \Phi[K d(a, e), e w] \\
= & \max \left\{\beta R E\left[\Phi\left(d\left(R a-K d(a, e)+(1-j(K d(a, e), e w)) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right], \psi(a, e)\right\} \\
\leq & \max \left\{\beta R E\left[\Phi\left(d\left(R a-K c(a, e)+(1-j(K c(a, e), e w)) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right], \psi(a, e)\right\} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \Phi[K d(a, e), e w]-\Phi[K c(a, e), e w] \\
\leq & \max \left\{\beta R E\left[\Phi\left(d\left(R a-K c(a, e)+(1-j(K c(a, e), e w)) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right], \psi(a, e)\right\} \\
& -\max \left\{\beta R E\left[\Phi\left(c\left(R a-K c(a, e)+(1-j(K c(a, e), e w)) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right], \psi(a, e)\right\} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& |\Phi[K c(a, e), e w]-\Phi[K d(a, e), e w]| \\
& \leq\left|\begin{array}{c}
\beta R E\left[\Phi\left(c\left(R a-K c(a, e)+(1-j(K c(a, e), e w)) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right] \\
-\beta R E\left[\Phi\left(d\left(R a-K c(a, e)+(1-j(K c(a, e), e w)) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right]
\end{array}\right| \\
& \leq \beta R E\left[\left\lvert\, \begin{array}{c}
\Phi\left(c\left(R a-K c(a, e)+(1-j(K c(a, e), e w)) e w, e^{\prime}\right), e^{\prime} w\right) \\
-\Phi\left(d\left(R a-K c(a, e)+(1-j(K c(a, e), e w)) e w, e^{\prime}\right), e^{\prime} w\right)
\end{array}\right. \|\right] \\
& \leq \beta R\left(\sup _{\left(a^{\prime}, e^{\prime}\right) \in \mathbb{R}_{+} \times E}\left|\Phi\left[c\left(a^{\prime}, e^{\prime}\right), e^{\prime} w\right]-\Phi\left[d\left(a^{\prime}, e^{\prime}\right), e^{\prime} w\right]\right|\right) \\
& =\beta R \rho(c, d) \text {. }
\end{aligned}
$$

Therefore, we have $\rho(K c, K d) \leq \beta R \rho(c, d)$.
By Theorem 3.2 (Contraction Mapping Theorem) in Stokey and Lucas (1989), we know that the operator K has a unique fixed point $c \in \mathcal{L} .{ }^{6}$ Starting from any $c^{1} \in \mathcal{L}$, we generate a sequence $\left\{c^{i}\right\}_{i=1}^{\infty}$ by letting $c^{i+1}=K c^{i}$ for all $i \geq 1$. We also know that $\lim _{i \rightarrow \infty} \rho\left(c^{i}, c\right)=0$. This fixed point c is the candidate optimal policy function of the original dynamic uitlity maximization problem.

If Case B) of Assumption 5 holds, we have

$$
\lim _{\sup _{c \rightarrow \infty}} \Psi(c, \Delta) \leq 1, \forall \Delta \geq 0,
$$

where

$$
\Psi(c, \Delta)=\max _{h, h^{\prime} \in[0,1]}\left\{\frac{u_{1}\left(c, h^{\prime}\right)}{u_{1}(c+\Delta, h)}\right\} .
$$

[^3]Letting $\Delta=0$, we have

$$
\Psi(c, 0)=\max _{h, h^{\prime} \in[0,1]}\left\{\frac{u_{1}\left(c, h^{\prime}\right)}{u_{1}(c, h)}\right\} .
$$

Thus, for $\varepsilon=\frac{1}{2}\left(\frac{1}{\beta R}-1\right)$, there exists $\bar{C}>0$ such that

$$
\frac{u_{1}\left(c, h^{\prime}\right)}{u_{1}(c, h)}<1+\varepsilon, \forall h, h^{\prime} \in[0,1],
$$

for all $c \geq \bar{C}$. Thus, there exists

$$
\bar{A}=\frac{\bar{C}}{r}>0
$$

such that

$$
\frac{u_{1}\left(r a, h^{\prime}\right)}{u_{1}(r a, h)}<1+\varepsilon, \forall h, h^{\prime} \in[0,1], \forall a \geq \bar{A} .
$$

Claim C5: The fixed point of K satisfies

$$
c(a, e) \geq r a, \forall e \in E,
$$

for $a \geq \bar{A}$.
Proof of Claim C5: If $r \leq 0$, then we have $c(a, e)>0 \geq r a$ for $a \geq 0$ and all $e \in E$.

If $r>0$, we pick $c^{1} \in \mathcal{L}$, such that $c^{1}(a, e)=c^{s}(R a+e w, e w)$ for $a \geq 0$ and all $e \in E$. We have

$$
\begin{aligned}
c^{1}(a, e) & =c^{s}(R a+e w, e w) \\
& =R a+\left(1-j\left[c^{s}(R a+e w, e w), \text { ew }\right]\right) e w \\
& \geq r a
\end{aligned}
$$

for $a \geq 0$ and all $e \in E$.
For $i \geq 1$, suppose that

$$
c^{i}(a, e) \geq r a, \forall(a, e) \in[\bar{A}, \infty) \times E .
$$

We want to show that

$$
c^{i+1}(a, e)=K c^{i}(a, e) \geq r a, \forall(a, e) \in[\bar{A}, \infty) \times E .
$$

Suppose that this is not true. Then we know that there exists $(a, e) \in[\bar{A}, \infty) \times E$ such that

$$
c^{i+1}(a, e)=K c^{i}(a, e)<r a .
$$

Thus,

$$
\begin{aligned}
& c^{i}\left(R a-K c^{i}(a, e)+\left(1-j\left(K c^{i}(a, e), e w\right)\right) e w, e^{\prime}\right) \\
\geq & r\left[R a-K c^{i}(a, e)+\left(1-j\left(K c^{i}(a, e), e w\right)\right) e w\right] \\
\geq & r\left[R a-K c^{i}(a, e)\right] \\
> & r(R a-r a) \\
= & r a .
\end{aligned}
$$

Therefore, we have
$\Phi\left(K c^{i}(a, e), e w\right)=\beta R E\left[\Phi\left(c^{i}\left(R a-K c^{i}(a, e)+\left(1-j\left(K c^{i}(a, e), e w\right)\right) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right]$, since $R a-K c^{i}(a, e)+\left(1-j\left(K c^{i}(a, e), e w\right)\right) e w>a \geq \bar{A}>0$. Thus,

$$
\begin{aligned}
\Phi(r a, e w) & <\Phi\left(K c^{i}(a, e), e w\right) \\
& =\beta R E\left[\Phi\left(c^{i}\left(R a-K c^{i}(a, e)+\left(1-j\left(K c^{i}(a, e), e w\right)\right) e w, e^{\prime}\right), e^{\prime} w\right) \mid e\right] \\
& <\beta R E\left[\Phi\left(r a, e^{\prime} w\right) \mid e\right] .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
1 & <\beta R E\left[\left.\frac{\Phi\left(r a, e^{\prime} w\right)}{\Phi(r a, e w)} \right\rvert\, e\right] \\
& =\beta R E\left[\left.\frac{u_{1}\left[r a, j\left(r a, e^{\prime} w\right)\right]}{u_{1}[r a, j(r a, e w)]} \right\rvert\, e\right] \\
& <\beta R(1+\varepsilon)=\frac{1}{2}(\beta R+1)<1 .
\end{aligned}
$$

We have a contradiction.
By mathetical induction, we have, for all $(a, e) \in[\bar{A}, \infty) \times E$,

$$
c^{i}(a, e) \geq r a, \forall i \geq 1 .
$$

Thus we have

$$
\Phi\left(c^{i}(a, e), e w\right) \leq \Phi(r a, e w), \forall i \geq 1 .
$$

since we know from Claim C1 that $\Phi(\cdot, e w)$ is a strictly decreasing function. Since $\lim _{i \rightarrow \infty} \rho\left(c^{i}, c\right)=0$ implies that $\lim _{i \rightarrow \infty} \Phi\left(c^{i}(a, e), e w\right)=\Phi(c(a, e), e w)$, we have $\Phi(c(a, e), e w) \leq \Phi(r a, e w)$, i.e.

$$
c(a, e) \geq r a .
$$

Claim C6: The first-order conditions

$$
\begin{gather*}
u_{1}\left(c_{t}, h_{t}\right) \geq \beta R E_{t} u_{1}\left(c_{t+1}, h_{t+1}\right), \text { with equality if } a_{t+1}>0, \tag{A.15}\\
u_{2}\left(c_{t}, h_{t}\right) \geq u_{1}\left(c_{t}, h_{t}\right) e w, \text { with equality if } h_{t}<1, \tag{A.16}
\end{gather*}
$$

and the transversality condition

$$
\begin{equation*}
\lim _{t \rightarrow \infty} E_{0} \beta^{t} u_{1}\left(c_{t}, h_{t}\right) a_{t+1}=0, \tag{A.17}
\end{equation*}
$$

are sufficient for the optimal solution of the original dynamic utility maximization problem.

Proof of Claim C6: For $a_{0} \geq 0,\left\{\left(c_{t}, h_{t}, a_{t+1}\right)\right\}_{t=0}^{\infty}$ is a feasible sequence satisfying

$$
c_{t}+a_{t+1}=R a_{t}+\left(1-h_{t}\right) e_{t} w, \forall t \geq 0,
$$

and

$$
a_{t+1} \geq 0, \forall t \geq 0 .
$$

The path $\left\{\left(c_{t}, h_{t}, a_{t+1}\right)\right\}_{t=0}^{\infty}$ satisfies the first-order conditions and the transversality condition. $\left\{\left(\hat{c}_{t}, \hat{h}_{t}, \hat{a}_{t+1}\right)\right\}_{t=0}^{\infty}$ is an alternative feasible sequence starting from $\hat{a}_{0}=$ a_{0} and satisfying

$$
\hat{c}_{t}+\hat{a}_{t+1}=R \hat{a}_{t}+\left(1-\hat{h}_{t}\right) e_{t} w, \forall t \geq 0
$$

and

$$
\hat{a}_{t+1} \geq 0, \forall t \geq 0 .
$$

From the budget constraints, we have

$$
c_{t}-\hat{c}_{t}=R\left(a_{t}-\hat{a}_{t}\right)-\left(a_{t+1}-\hat{a}_{t+1}\right)-\left(h_{t}-\hat{h}_{t}\right) e_{t} w .
$$

Since $u(c, h)$ is strictly concave in c and h, we have

$$
\begin{aligned}
& u\left(c_{t}, h_{t}\right)-u\left(\hat{c}_{t}, \hat{h}_{t}\right) \\
\geq & u_{1}\left(c_{t}, h_{t}\right)\left(c_{t}-\hat{c}_{t}\right)+u_{2}\left(c_{t}, h_{t}\right)\left(h_{t}-\hat{h}_{t}\right) \\
\geq & u_{1}\left(c_{t}, h_{t}\right)\left[R\left(a_{t}-\hat{a}_{t}\right)-\left(a_{t+1}-\hat{a}_{t+1}\right)-\left(h_{t}-\hat{h}_{t}\right) e_{t} w\right]+u_{2}\left(c_{t}, h_{t}\right)\left(h_{t}-\hat{h}_{t}\right) \\
\geq & u_{1}\left(c_{t}, h_{t}\right)\left[R\left(a_{t}-\hat{a}_{t}\right)-\left(a_{t+1}-\hat{a}_{t+1}\right)\right]+\left[u_{2}\left(c_{t}, h_{t}\right)-u_{1}\left(c_{t}, h_{t}\right) e_{t} w\right]\left(h_{t}-\hat{h}_{t}\right) .
\end{aligned}
$$

From the labor-leisure decision equation (A.16), we know that $h_{t}<1$ implies that $u_{2}\left(c_{t}, h_{t}\right)-u_{1}\left(c_{t}, h_{t}\right) e_{t} w=0$. Furthermore, $h_{t}=1$ implies that $h_{t}-\hat{h}_{t} \geq 0$. In these two cases we have

$$
\left[u_{2}\left(c_{t}, h_{t}\right)-u_{1}\left(c_{t}, h_{t}\right) e_{t} w\right]\left(h_{t}-\hat{h}_{t}\right) \geq 0
$$

Therefore, we have

$$
\begin{aligned}
& u\left(c_{t}, h_{t}\right)-u\left(\hat{c}_{t}, \hat{h}_{t}\right) \\
\geq & u_{1}\left(c_{t}, h_{t}\right)\left[R\left(a_{t}-\hat{a}_{t}\right)-\left(a_{t+1}-\hat{a}_{t+1}\right)\right] .
\end{aligned}
$$

For $T \geq 1$ we have

$$
\begin{aligned}
& E_{0} T=0 \beta^{t}\left[u\left(c_{t}, h_{t}\right)-u\left(\hat{c}_{t}, \hat{h}_{t}\right)\right] \\
\geq & E_{0_{t=0}}^{T} \beta^{t} u_{1}\left(c_{t}, h_{t}\right)\left[R\left(a_{t}-\hat{a}_{t}\right)-\left(a_{t+1}-\hat{a}_{t+1}\right)\right] \\
= & E_{0_{t=0}^{T-1}}^{T-1} \beta^{t}\left[u_{1}\left(c_{t}, h_{t}\right)-\beta R E_{t} u_{1}\left(c_{t+1}, h_{t+1}\right)\right]\left(\hat{a}_{t+1}-a_{t+1}\right) \\
& -E_{0} \beta^{T} u_{1}\left(c_{T}, h_{T}\right)\left(a_{T+1}-\hat{a}_{T+1}\right) .
\end{aligned}
$$

From the Euler equation (A.15) we know that $a_{t+1}>0$ implies that $u_{1}\left(c_{t}, h_{t}\right)-$ $\beta R E_{t} u_{1}\left(c_{t+1}, h_{t+1}\right)=0$. Moreover, $a_{t+1}=0$ implies that $\hat{a}_{t+1}-a_{t+1} \geq 0$. In these two cases we have

$$
\left[u_{1}\left(c_{t}, h_{t}\right)-\beta R E_{t} u_{1}\left(c_{t+1}, h_{t+1}\right)\right]\left(\hat{a}_{t+1}-a_{t+1}\right) \geq 0
$$

Therefore, we have

$$
E_{0_{t=0}^{T-1}}^{T-1} \beta^{t}\left[u_{1}\left(c_{t}, h_{t}\right)-\beta R E_{t} u_{1}\left(c_{t+1}, h_{t+1}\right)\right]\left(\hat{a}_{t+1}-a_{t+1}\right) \geq 0 .
$$

Thus, we have

$$
\begin{aligned}
E_{0_{t=0}}^{T} \beta^{t}\left[u\left(c_{t}, h_{t}\right)-u\left(\hat{c}_{t}, \hat{h}_{t}\right)\right] & \geq-E_{0} \beta^{T} u_{1}\left(c_{T}, h_{T}\right)\left(a_{T+1}-\hat{a}_{T+1}\right) \\
& \geq-E_{0} \beta^{T} u_{1}\left(c_{T}, h_{T}\right) a_{T+1},
\end{aligned}
$$

since $\hat{a}_{T+1} \geq 0$. By the transversality condition (A.17), we have

$$
E_{0_{t=0}}^{\infty} \beta^{t}\left[u\left(c_{t}, h_{t}\right)-u\left(\hat{c}_{t}, \hat{h}_{t}\right)\right] \geq-\lim _{T \rightarrow \infty} E_{0} \beta^{T} u_{1}\left(c_{T}, h_{T}\right) a_{T+1}=0 .
$$

Thus, the path $\left\{\left(c_{t}, h_{t}, a_{t+1}\right)\right\}_{t=0}^{\infty}$ is optimal.
Now I verify that the fixed point of operator K satisfies all the conditions in Claim C6. By the construction of the opertaor K, its fixed point $c \in \mathcal{L}$ satisfies the first-order condtitions (A.15) and (A.16). We only need to verify the transversality condition (A.17). For any $c \in \mathcal{L}, \Phi[c(a, e), e w]$ is a bounded
function of $(a, e) \in \mathbb{R}_{+} \times E$. Thus, $\left\{u_{1}\left(c_{t}, h_{t}\right)\right\}_{t=0}^{\infty}$ is bounded. Then, we only need to show

$$
\lim _{t \rightarrow \infty} E_{0} \beta^{t} a_{t+1}=0
$$

From Claim C5 we have

$$
\begin{aligned}
a_{t+1} & =R a_{t}-c_{t}+\left(1-h_{t}\right) e_{t} w \\
& \leq R a_{t}-r a_{t}+\left(1-h_{t}\right) e_{t} w \\
& \leq a_{t}+e_{t} w \\
& \leq a_{t}+e^{n} w,
\end{aligned}
$$

for all $t \geq 0$. Thus, we have

$$
a_{t+1} \leq a_{0}+(t+1) e^{n} w
$$

Apparently, we have $\lim _{t \rightarrow \infty} E_{0} \beta^{t} a_{t+1}=0$.
Suppose that, for some $e \in E$, we can pick sequence $\left\{a_{m}\right\}_{m=1}^{\infty}$ such that $a^{\prime}\left(a_{m}, e\right) \geq a_{m}$ for $m \geq 1$, and $\lim _{m \rightarrow \infty} a_{m}=\infty$. Thus, we have

$$
\begin{aligned}
c\left(a_{m}, e\right) & =R a_{m}-a^{\prime}\left(a_{m}, e\right)+\left(1-h_{m}\right) e w \\
& \leq R a_{m}-a_{m}+\left(1-h_{m}\right) e w \\
& =r a_{m}+\left(1-h_{m}\right) e w \\
& \leq r a_{m}+e w .
\end{aligned}
$$

If $r \leq 0$, then $c\left(a_{m}, e\right) \leq e w$ for $m \geq 1$. We have a contradiction since $\lim _{m \rightarrow \infty} a_{m}=\infty$ implies that $\lim _{m \rightarrow \infty} c\left(a_{m}, e\right)=\infty$ from part 1) of Proposition 3.

If $r>0$, we have $a^{\prime}\left(a_{m}, e\right) \geq a_{m} \geq \bar{A}>0$ for $a_{m} \geq \bar{A}$. Thus, we know that

$$
c\left(a^{\prime}\left(a_{m}, e\right), e^{\prime}\right) \geq r a^{\prime}\left(a_{m}, e\right) \geq r a_{m}, \forall e \in E,
$$

from Claim C5. Therefore, we have

$$
\Phi\left[c\left(a_{m}, e\right), e w\right]=\beta R E\left[\Phi\left(c\left(a^{\prime}\left(a_{m}, e\right), e^{\prime}\right), e^{\prime} w\right) \mid e\right] \leq \beta R E\left[\Phi\left(r a_{m}, e^{\prime} w\right) \mid e\right]
$$

Thus,

$$
\Phi\left(r a_{m}+e w, e w\right) \leq \Phi\left[c\left(a_{m}, e\right), e w\right] \leq \beta R E\left[\Phi\left(r a_{m}, e^{\prime} w\right) \mid e\right] .
$$

Therefore, we have

$$
E\left[\left.\frac{\Phi\left(r a_{m}, e^{\prime} w\right)}{\Phi\left(r a_{m}+e w, e w\right)} \right\rvert\, e\right] \geq \frac{1}{\beta R},
$$

which implies that there exists $e^{\prime} \in E$ and a subsequence $\left\{a_{m_{i}}\right\}_{i=1}^{\infty}$ such that

$$
\max _{h, h^{\prime} \in[0,1]}\left\{\frac{u_{1}\left(r a_{m_{i}}, h^{\prime}\right)}{u_{1}\left(r a_{m_{i}}+e w, h\right)}\right\} \geq \frac{u_{1}\left[r a_{m_{i}}, j\left(r a_{m_{i}}, e^{\prime} w\right)\right]}{u_{1}\left[r a_{m_{i}}+e w, j\left(r a_{m_{i}}+e w, e w\right)\right]} \geq \frac{1}{\beta R}>1,
$$

since E is a finite set. Therefore, we have

$$
\lim \sup _{c \rightarrow \infty} \Psi(c, e w) \geq \frac{1}{\beta R}>1,
$$

which contradicts Case B) of Assumption 5.
Consequently, we know that there exists $k^{b}>0$ such that

$$
a^{\prime}(a, e)<a, \forall e \in E,
$$

for $a \geq k^{b}$.

3 Appendix C

3.1 Proof of Theorem 7

Proof: For any bounded continuous function f on X, define

$$
\left(T_{\theta} f\right)(x)=\int_{X} f\left(x^{\prime}\right) P_{\theta}\left(x, d x^{\prime}\right), \forall x \in X, \forall \theta \in \Theta,
$$

and

$$
\langle f, \lambda\rangle=\int_{X} f(x) \lambda(d x), \forall \lambda \in \Lambda(X, \mathbf{B}(X)) .
$$

Define operator T_{θ}^{*} on $\Lambda(X, \mathbf{B}(X))$ by

$$
\left(T_{\theta}^{*} \lambda\right)(B)=\int_{X} P_{\theta}(x, B) \lambda(d x), \forall B \in \mathbf{B}(X) .
$$

From Theorem 8.3 and its corollary, posited by Stoky and Lucas (1989), we have

$$
\left\langle T_{\theta} f, \lambda\right\rangle=\left\langle f, T_{\theta}^{*} \lambda\right\rangle, \forall \lambda \in \Lambda(X, \mathbf{B}(X)) .
$$

Condition (b) implies that $\left(T_{\theta} f\right)(x)$ is continuous in (x, θ). Let $\hat{\Theta} \subset \Theta$ be a compact set containing $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ and θ_{0}. Thus, it is uniformly continuous on the compact set $C \times \hat{\Theta}$, where C is a compact subset of X. Condition (c) implies that

$$
\left(T_{\theta_{n}}^{*} \mu_{n}\right)(B)=\mu_{n}(B), \forall B \in \mathbf{B}(X) .
$$

For $\varepsilon>0$, condition (d) implies that we can pick compact set $C \subset X$ such that

$$
\mu_{n}(X \backslash C) \leq \frac{\varepsilon}{4\|f\|}, \forall n \geq 1,
$$

where $\|f\|=\sup _{x \in X}|f(x)|<\infty$ is the sup norm of f. Since $\left\{\theta_{n}\right\}_{n=1}^{\infty}$ and θ_{0} lie in $\hat{\Theta}$ and $\lim _{n \rightarrow \infty} \theta_{n}=\theta_{0}$, it follows from the uniform continuity of $\left(T_{\theta} f\right)(x)$ on $C \times \hat{\Theta}$ that there exists $N \geq 1$ such that

$$
\left|\left(T_{\theta_{n}} f\right)(x)-\left(T_{\theta_{0}} f\right)(x)\right|<\frac{\varepsilon}{2}, \forall x \in C, \forall n \geq N .
$$

Thus we have

$$
\begin{aligned}
& \left|\left\langle T_{\theta_{n}} f, \mu_{n}\right\rangle-\left\langle T_{\theta_{0}} f, \mu_{n}\right\rangle\right| \\
= & \left|\left\langle T_{\theta_{n}} f-T_{\theta_{0}} f, \mu_{n}\right\rangle\right| \\
\leq & \langle | T_{\theta_{n}} f-T_{\theta_{0}} f\left|, \mu_{n}\right\rangle \\
= & \int_{X}\left|\left(T_{\theta_{n}} f\right)(x)-\left(T_{\theta_{0}} f\right)(x)\right| \mu_{n}(d x) \\
= & \int_{C}\left|\left(T_{\theta_{n}} f\right)(x)-\left(T_{\theta_{0}} f\right)(x)\right| \mu_{n}(d x)+\int_{X \backslash C}\left|\left(T_{\theta_{n}} f\right)(x)-\left(T_{\theta_{0}} f\right)(x)\right| \mu_{n}(d x) \\
\leq & \int_{X} \frac{\varepsilon}{2} \mu_{n}(d x)+\int_{X \backslash C}\left|\left(T_{\theta_{n}} f\right)(x)-\left(T_{\theta_{0}} f\right)(x)\right| \mu_{n}(d x) \\
\leq & \frac{\varepsilon}{2}+\int_{X \backslash C}\left[\left|\left(T_{\theta_{n}} f\right)(x)\right|+\left|\left(T_{\theta_{0}} f\right)(x)\right|\right] \mu_{n}(d x) \\
\leq & \frac{\varepsilon}{2}+\int_{X \backslash C} 2\|f\| \mu_{n}(d x) \\
\leq & \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,
\end{aligned}
$$

since $\left|\left(T_{\theta} f\right)(x)\right|=\left|\int_{X} f\left(x^{\prime}\right) P_{\theta}\left(x, d x^{\prime}\right)\right| \leq\|f\|$. Therefore, we have

$$
\left|\left\langle T_{\theta_{n}} f, \mu_{n}\right\rangle-\left\langle T_{\theta_{0}} f, \mu_{n}\right\rangle\right|<\varepsilon, \forall n \geq N .
$$

That is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\left\langle T_{\theta_{n}} f, \mu_{n}\right\rangle-\left\langle T_{\theta_{0}} f, \mu_{n}\right\rangle\right|=0 . \tag{A.18}
\end{equation*}
$$

We know that $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is tight from condition (d). From Theorem 5.1 posited by Billingsley (1999), we know that it has a weakly convergent subsequence. Let $\left\{\mu_{n_{i}}\right\}_{i=1}^{\infty}$ be such a subsequence, and let $\hat{\mu}$ be its limit. Thus, for any bounded continuous function f on X, we have

$$
\begin{aligned}
& \left|\langle f, \hat{\mu}\rangle-\left\langle T_{\theta_{0}} f, \hat{\mu}\right\rangle\right| \\
\leq & \left|\langle f, \hat{\mu}\rangle-\left\langle f, \mu_{n_{i}}\right\rangle\right|+\left|\left\langle f, \mu_{n_{i}}\right\rangle-\left\langle T_{\theta_{0}} f, \mu_{n_{i}}\right\rangle\right|+\left|\left\langle T_{\theta_{0}} f, \mu_{n_{i}}\right\rangle-\left\langle T_{\theta_{0}} f, \hat{\mu}\right\rangle\right| .
\end{aligned}
$$

Since f and $T_{\theta_{0}} f$ are bounded continuous functions on X, and $\left\{\mu_{n_{i}}\right\}_{i=1}^{\infty}$ converges weakly to $\hat{\mu}$, we have $\lim _{i \rightarrow \infty}\left|\langle f, \hat{\mu}\rangle-\left\langle f, \mu_{n_{i}}\right\rangle\right|=0$ and $\lim _{i \rightarrow \infty} \mid\left\langle T_{\theta_{0}} f, \mu_{n_{i}}\right\rangle-$
$\left\langle T_{\theta_{0}} f, \hat{\mu}\right\rangle \mid=0$. By Equation (A.18) we also have

$$
\begin{aligned}
\lim _{i \rightarrow \infty}\left|\left\langle f, \mu_{n_{i}}\right\rangle-\left\langle T_{\theta_{0}} f, \mu_{n_{i}}\right\rangle\right| & =\lim _{i \rightarrow \infty}\left|\left\langle f, T_{\theta_{n_{i}}}^{*} \mu_{n_{i}}\right\rangle-\left\langle T_{\theta_{0}} f, \mu_{n_{i}}\right\rangle\right| \\
& =\lim _{i \rightarrow \infty}\left|\left\langle T_{\theta_{n_{i}}} f, \mu_{n_{i}}\right\rangle-\left\langle T_{\theta_{0}} f, \mu_{n_{i}}\right\rangle\right| \\
& =0 .
\end{aligned}
$$

Thus, for any bounded continuous function f on X, we have

$$
\langle f, \hat{\mu}\rangle=\left\langle T_{\theta_{0}} f, \hat{\mu}\right\rangle=\left\langle f, T_{\theta_{0}}^{*} \hat{\mu}\right\rangle .
$$

Hence, by Corollary 2 to Theorem 12.6 proposed by Stokey and Lucas (1989), we have

$$
\hat{\mu}(B)=\left(T_{0}^{*} \hat{\mu}\right)(B), \forall B \in \mathbf{B}(X) .
$$

Thus, $\hat{\mu}$ is a fixed point of $P_{\theta_{0}}(\cdot, \cdot)$.

References

[1] Acikgöz, Ö., "On the Existence and Uniqueness of Stationary Equilibrium in Bewley Economies with Production," Journal of Economic Theory 173 (2018), 18-55.
[2] Billingsley, P., Convergence of Probability Measures, 2 ${ }^{\text {nd }}$ ed. (Hoboken: Wiley, 1999).
[3] Dutta, P., M. Majumdar, and R. Sundaram, "Parametric Continuity in Dynamic Programming Problems," Journal of Economic Dynamics and Control 18 (1994), 1069-1092.
[4] Florenzano, M. and C. Le Van, Finite Dimensional Convexity and Optimization (New York: Springer, 2001).
[5] Li, H. and J. Stachurski, "Solving the Income Fluctuation Problem with Unbounded Rewards," Journal of Economic Dynamics and Control 45 (2014), 353-365.
[6] Meyn, S. and R. Tweedie (2009): Markov Chains and Stochastic Stability, Second Edition, Cambridge University Press, Cambridge, UK.
[7] Rockafellar, T., Convex Analysis (Princeton: Princeton University Press, 1970).
[8] Stachurski, J. and A. Toda, "An Impossibility Theorem for Wealth in Heterogeneous-agent Models with Limited Heterogeneity," Journal of Economic Theory 182 (2019), 1-24.
[9] Stokey, N. and R. Lucas, Recursive Methods in Economic Dynamics (Cambridge: Harvard University Press, 1989).

[^0]: ${ }^{1}$ For the definition of positive Harris chains, see Meyn and Tweedie (2009) (page 231).
 ${ }^{2}$ For the definition of T-chains, see Meyn and Tweedie (2009) (page 124).
 ${ }^{3}$ Actually, the theorem only requires it to be bounded in probability.

[^1]: ${ }^{4}$ For the definition of petitle sets, see Meyn and Tweedie (2009) (page 117).

[^2]: ${ }^{5}$ If Case ii) of Assumption 2 holds, we define $\Phi(c, q)=U^{\prime}(c)$ for all $q>0$. All results in the following steps also hold.

[^3]: ${ }^{6}$ An important implication of this contraction-mapping argument is that $u_{1}(c, h)$ is bounded. Furthermore, we know that $u_{1}[c(0, e), h(0, e)]$ is bounded for all $e \in E$. Thus, $\min _{e \in E}\{c(0, e)\}>0$ is the lower bound of consumption. To use this contraction-mapping argument, we do not need Assumption 5. Moreover, this argument does not need the assumption that the utility function $u(c, h)$ has a lower bound. Li and Stachurski (2014), Acikgöz (2018), and Stachurski and Toda (2019) apply this contraction-mapping argument to income fluctuation problems with exogenous labor supply.

