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1 Appendix A

1.1 Proof of Proposition 1

Proof: 1) J(y, q) is bounded since u(c, h) is bounded.

2) Suppose that 0 < y1 < y2. cs(y1, q) and hs(y1, q) are the optimal choices
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for the intratemporal problem. We have

J(y1, q) = u
[
cs(y1, q), hs(y1, q)

]
< u

[
cs(y1, q) + y2 − y1, hs(y1, q)

]
≤ J(y2, q).

Thus J(y, q) is strictly increasing in y.

For any y1, y2 > 0 and y1 , y2, we have (cs(y1, q), hs(y1, q)) , (cs(y2, q), hs(y2, q)),

since u(c, h) is strictly increasing in c and h. Since u(c, h) is strictly concave in

c and h, we have

J
[
λy1 + (1 − λ)y2, q

]
≥ u

[
λcs(y1, q) + (1 − λ)cs(y2, q), λhs(y1, q) + (1 − λ)hs(y2, q)

]
> λu

[
cs(y1, q), hs(y1, q)

]
+ (1 − λ)u

[
cs(y2, q), hs(y2, q)

]
= λJ(y1, q) + (1 − λ)J(y2, q),

for λ ∈ (0, 1). Thus, J(y, q) is strictly concave in y.

3) By Theorem 3.6 (Theorem of the Maximum) posited by Stokey and Lucas

(1989), cs(y, q) and hs(y, q) are continuous in y ∈ (0,∞).

If Case ii) of Assumption 2 holds, we have hs(y, q) = 0 and cs(y, q) = y.

Thus, cs(y, q) and hs(y, q) are increasing in y.

Next I will concentrate on Case i) of Assumption 2. In this case, we have

hs(y, q) > 0 and
u2

[
cs(y, q), hs(y, q)

]
u1

[
cs(y, q), hs(y, q)

] ≥ q,

for y ∈ (0,∞). For 0 < y1 < y2, hs(y1, q) = 1 implies that hs(y2, q) = 1. Suppose

that hs(y2, q) < 1. Then cs(y1, q) < cs(y2, q). u21u1 − u11u2 > 0 implies that
∂
(

u2
u1

)
∂c > 0. Additionally, u12u2 − u22u1 > 0 implies that

∂
(

u2
u1

)
∂h < 0. Therefore, we

have
u2

[
cs(y1, q), hs(y1, q)

]
u1

[
cs(y1, q), hs(y1, q)

] < u2
[
cs(y2, q), hs(y2, q)

]
u1

[
cs(y2, q), hs(y2, q)

] = q.
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We have a contradiction. Thus we have hs(y2, q) = 1. cs(y2, q) = y2−q > y1−q =

cs(y1, q).

Suppose that hs(y, q) ∈ (0, 1) for some y > 0. We have

u2
[
cs(y, q), hs(y, q)

]
= u1

[
cs(y, q), hs(y, q)

]
q,

and

cs(y, q) + hs(y, q)q = y.

Thus, using the Implicit Function Theorem, we have

∂cs(y, q)
∂y

=
(u12u2 − u22u1)u1

(u12u2 − u22u1)u1 + (u21u1 − u11u2)u2
> 0,

and
∂hs(y, q)
∂y

=
(u21u1 − u11u2)u1

(u12u2 − u22u1)u1 + (u21u1 − u11u2)u2
> 0,

since u21u1 − u11u2 > 0 and u12u2 − u22u1 > 0. Both cs(y, q) and hs(y, q) are

increasing in y.

4) To prove that J(y, q) is differentiable at y0 ∈ (0,∞), note that Assumption

2 implies that c0 > 0, which in turn means that y0 − hs(y0, e)q > 0. Thus, for

any y belonging to a neighborhood D of y0, hs(y0, q) is still feasible. Define

H(y, q) on D as H(y, q) = u
[
y − hs(y0, q)q, hs(y0, e)

]
. Thus, H(y, q) is concave

and differentiable in y. Since hs(y0, q) is still feasible for all y ∈ D, it follows

that

H(y, q) ≤ max
h∈[0,1]

u(y − hq, h) = J(y, q),∀y ∈ D,

with equality at y0. Now any subgradient p of J(y, q) at y0 must satisfy

p(y − y0) ≥ J(y, q) − J(y0, q) ≥ H(y, q) − H(y0, q),∀y ∈ D,

where the first inequality uses the definition of a subgradient and the second

uses the fact that H(y, q) ≤ J(y, q), with equality at y0. Since H(y, q) is dif-

ferentiable at y0, p is unique. Following Theorem 25.1 posited by Rockafellar
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(1970), any concave function with a unique subgradient at an interior point y0 is

differentiable at y0. Thus, J(y, q) is differentiable at y0. Furthermore, we know

that J1(y0, q) = H1(y0, q) = u1
[
cs(y0, q), hs(y0, q)

]
for y0 ∈ (0,∞). From part 3)

of this proposition, cs(y0, q) and hs(y0, q) are continuous in y0 ∈ (0,∞). Thus,

J1(y0, q) is continuous in y0 ∈ (0,∞). �

1.2 Proof of Proposition 2

Proof: 1) This is a direct result from Theorems 9.6, 9.7, and 9.8 from the work

of Stokey and Lucas (1989).

2) To prove that V(a, e) is differentiable at a0 ∈ (0,∞), note that Assumption

2 implies that y0 > 0, which in turn means that Ra0 + ew − a′(a0, e) > 0. Thus,

for any a belonging to a neighborhood D of a0, a′(a0, e) is still feasible. Define

W(a, e) on D as W(a, e) = J [Ra + ew − a′(a0, e), ew] + βE[V(a′(a0, e), e′)|e].

Thus, W(a, e) is concave and differentiable in a. Since a′(a0, e) is still feasible

for all a ∈ D, it follows that

W(a, e) ≤ max
a′∈Γ(a,e)

{J(Ra + ew − a′, ew) + βE[V(a′, e′)|e]} = V(a, e),∀a ∈ D,

with equality at a0. Now any subgradient p of V(a, e) at a0 must satisfy

p(a − a0) ≥ V(a, e) − V(a0, e) ≥ W(a, e) −W(a0, e),∀a ∈ D,

where the first inequality uses the definition of a subgradient and the second

uses the fact that W(a, e) ≤ V(a, e), with equality at a0. Since W(a, e) is dif-

ferentiable at a0, p is unique. By Theorem 25.1 posited by Rockafellar (1970),

any concave function with a unique subgradient at an interior point a0 is dif-

ferentiable at a0. Thus, V(a, e) is differentiable at a0. Furthermore, we know

that V1(a0, e) = W1(a0, e) = RJ1
[
y(a0, e), ew

]
for a0 ∈ (0,∞). From part 1) of

this proposition we know that V(a, e) is continuous and concave in a ∈ [0,∞).
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Thus, using Proposition 6.7.4 in Florenzano and Le Van (2001), we know that

lima→0 V1(a, e) = V+
1 (0, e). Therefore, V(a, e) is continuously differentiable in

a ∈ [0,∞). We already know that V1(a, e) = RJ1
[
y(a, e), ew

]
for a ∈ (0,∞). By

the Theorem of the Maximum, y(a, e) is continuous in a ∈ [0,∞). We also know

from part 4) of Proposition 1 that J1(y, ew) is continuous in y ∈ (0,∞). Thus we

have V1(a, e) = RJ1
[
y(a, e), ew

]
for all a ∈ [0,∞).

3) By the Theorem of the Maximum, a′(a, e) is continuous in a.

The first-order condition (FOC) of the household’s problem is

J1
[
y(a, e), ew

]
≥ βE[V1(a′(a, e), e′)|e], with equality if a′(a, e) > 0. (A.1)

Combining FOC (A.1) and V1(a, e) = RJ1
[
y(a, e), ew

]
for all a ∈ [0,∞), we

have the Euler equation of the household’s problem,

V1(a, e) ≥ βRE[V1(a′(a, e), e′)|e], with equality if a′(a, e) > 0. (A.2)

For fixed e ∈ E and any a2 > a1 ≥ 0, we know that either a′(a1, e) = 0 or

a′(a1, e) > 0. If a′(a1, e) = 0, then a′(a2, e) ≥ a′(a1, e). If a′(a1, e) > 0, then we

have

V1(a1, e) = βRE[V1(a′(a1, e), e′)|e].

Suppose that a′(a2, e) < a′(a1, e). Then, from the Euler equation (A.2), we have

V1(a2, e) ≥ βRE[V1(a′(a2, e), e′)|e] > βRE[V1(a′(a1, e), e′)|e] = V1(a1, e),

which contradicts the fact that V(a, e) is strictly concave in a. Thus we have

a′(a2, e) ≥ a′(a1, e).

4) By the Theorem of the Maximum, y(a, e) is continuous in a. From part 2)

of this proposition we know that V1(a, e) = RJ1
[
y(a, e), ew

]
for all a ∈ [0,∞).

Thus, y(a, e) is strictly increasing in a. �
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1.3 Proof of Proposition 3

Proof: 1) By part 4) of Proposition 2, y(a, e) is continuous and strictly increasing

in a. Since cs(y, q) and hs(y, q) are continuous and increasing in y by part 3) of

Proposition 1, c(a, e) and h(a, e) are continuous and increasing in a.

For e ∈ E, h(a, e) is increasing in a and h(a, e) ∈ (0, 1]. Thus, we have

lima→∞ h(a, e) = h̄(e) ∈ [0, 1]. We know that lima→∞ V1(a, e) = 0, since V(a, e)

is bounded. Thus,

lim
a→∞

u1 [c(a, e), h(a, e)] = 0, (A.3)

since V1(a, e) = Ru1 [c(a, e), h(a, e)]. Suppose that there exists {am}
∞
m=1 and B >

0 such tha tlimm→∞ am = ∞ and c(am, e) ≤ B for all m ≥ 1. Then we have

u1 [c(a, e), h(a, e)] ≥ u1 [B, h(a, e)] .

Thus,

lim
a→∞

u1 [c(a, e), h(a, e)] ≥ lim
a→∞

u1 [B, h(a, e)] = u1

[
B, h̄(e)

]
> 0,

which contradicts Equation (A.3). Therefore, we have lima→∞ c(a, e) = ∞.

2) Suppose that h(a, e) < 1 for all a > 0. Then we have

u2 [c(a, e), h(a, e)] = u1 [c(a, e), h(a, e)] ew.

From Equation (A.3) we have

lim
a→∞

u2 [c(a, e), h(a, e)] = 0. (A.4)

If Case A) of Assumption 5 holds, we can pick â > 0 such that u2 [c(â, e), 1] > 0.

We know that c(a, e) ≥ c(â, e) for a > â. Thus, u12 ≥ 0 implies that

u2 [c(a, e), h(a, e)] ≥ u2 [c(â, e), h(a, e)] > u2 [c(â, e), 1] > 0,

which contradicts Equation (A.4). Thus there exists ã > 0 such that h(ã, e) = 1.

From part 1) of this proposition we know that h(a, e) is increasing in a. Thus we

have h(a, e) = 1 for a ≥ ã.
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Since E is a finite set, we have h(a, e) = 1 for sufficiently large a and all

e ∈ E. �

1.4 Proof of Theorem 1

Proof: Let dt = (βR)tV1(at, et). The Euler equation (4) implies that

dt ≥ Et (dt+1) .

Thus, {dt}
∞
t=0 is a nonnegative supermartingale. We know that V1(at, et) is fi-

nite since V1(at, et) = Ru1(ct, ht). Since d0 = V1(a0, e0), it follows from the

Supermartingale Convergence Theorem that there exists a random variable d∞

with E (d∞) ≤ V1(a0, e0) such that limt→∞ dt = d∞ almost surely. Thus we have

limt→∞(βR)tV1(at, et) = d∞ almost surely. Since βR > 1, we have

lim
t→∞

V1(at, et) = 0 a.s. (A.5)

Let D = {ω : lim inft→∞ at(ω) < ∞}. For each ω ∈ D, there exists a bounded

subsequence {atk(ω)}∞k=1 and B(ω) > 0 such that atk(ω) < B(ω) for all k ≥ 0.

Suppose that the probability of D is positive, i.e. Pr(D) > 0. From Equation

(A.5), we can pick a path ω ∈ D such that V1(atk(ω), etk(ω))→ 0 as k → ∞. For

convenience I omit ω in the following derivation. Thus we have

V1(atk , etk) ≥ V1(B, etk) ≥ min
e∈E
{V1(B, e)} > 0,∀k ≥ 0.

We have a contradiction. Thus, limt→∞ at = ∞ almost surely. �

1.5 Proof of Lemma 1

Proof: The Euler equation (4) implies that

V1(at, et) ≥ EtV1(at+1, et+1).
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Thus, {V1(at, et)}∞t=0 is a nonnegative supermartingale. We know that V1(at, et)

is finite since V1(at, et) = Ru1(ct, ht). Since d0 = V1(a0, e0), it follows from the

Supermartingale Convergence Theorem that there exists a random variable d∞

with E (d∞) ≤ V1(a0, e0) such that

lim
t→∞

V1(at, et) = d∞ a.s.

Moreover, d∞ is finite almost surely, since E (d∞) ≤ V1(a0, e0). �

1.6 Proof of Proposition 4

Proof: If Case ii) of Assumption 2 holds, g(λ, e) = 0 for λ ∈ (0,∞). Thus, it is

decreasing in λ.

If Case i) of Assumption 2 holds, we have

g(λ, e) = min {v(λ, e), 1} , λ ∈ (0,∞),

for e ∈ E. Therefore, we know that g(λ, e) is decreasing in λ ∈ (0,∞) since
∂v(λ,e)
∂λ

< 0 for λ ∈ (0,∞). �

1.7 Proof of Lemma 2

Proof: If Case ii) of Assumption 2 holds, we have λ̄ = 0. We know that ξ(φ, e) =

(U′)−1 (φ) and g(φ, e) = 0 for φ > 0 and all e ∈ E. Therefore, we have

χ(φ, e1) =
(
U′

)−1 (φ) − e1w

>
(
U′

)−1 (φ) − e2w = χ(φ, e2)

· · ·

>
(
U′

)−1 (φ) − enw = χ(φ, en),

for φ > 0. Thus we have χ(φ, e1) > χ(φ, e2) > · · · > χ(φ, en) for φ > 0.
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If Case i) of Assumption 2 holds, we have u11u22 − u21u12 > 0. Thus we use

the Implicit Function Theorem to find continuous functions ξ(λ, e) and v(λ, e)

on (0,∞) × (0, 2en) such that

u1 [κ(λ, e), v(λ, e)] = λ,

and

u2 [κ(λ, e), v(λ, e)] = λew,

for λ > 0 and e ∈ (0, 2en). From the Implicit Function Theorem we also know

that
∂κ(λ, e)
∂e

= −
u22

u11u22 − u21u12
λw > 0,

and
∂v(λ, e)
∂e

=
u11

u11u22 − u21u12
λw < 0,

for (λ, e) ∈ (0,∞) × (0, 2en).

For λ > 0, let

e1(λ) =


0, if Φ1(λ) is empty

sup Φ1(λ), if Φ1(λ) is not empty
,

where Φ1(λ) = {e ∈ (0, 2en) : v(λ, e) ≥ 1}. Since ∂v(λ,e)
∂e < 0 for e ∈ (0, 2en), we

define

h = g(λ, e) =


1, e ∈ (0, e1(λ)]

v(λ, e), e ∈ (e1(λ), 2en)
,

and

c = ξ(λ, e) =


ϑ−1(λ), e ∈ (0, e1(λ)]

κ(λ, e), e ∈ (e1(λ), 2en)
,

where ϑ(c) = u1(c, 1). This way we extend the domain of ξ(λ, e) and g(λ, e) to

(0,∞) × (0, 2en), which contains (0,∞) × E. We know that g(λ, e) > 0 for all

(λ, e) ∈ (0,∞) × (0, 2en).
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For φ ∈ (0, λ̄], we have

g(φ, e) = 1,∀e ∈ E,

and

χ(φ, e) = ϑ−1(φ),∀e ∈ E.

For φ > λ̄, we have 0 < g(φ, e) = v(φ, e) < 1 and ξ(φ, e) = κ(φ, e) for all

e ∈ (e1(φ), 2en). Therefore, we have

∂χ(φ, e)
∂e

=
∂κ(φ, e)
∂e

+
∂v(φ, e)
∂e

ew − (1 − h)w

= −
u12u1 − u11u2

u11u22 − u21u12

φw
u1
−

[
1 − g(φ, e)

]
w < 0,

for e ∈ (e1(φ), 2en). Suppose that e1(φ) ≥ en. Then we have

g(φ, e) = 1,∀e ∈ E,

since E ⊂ (0, e1(φ)]. This is impossible since, by the definition of λ̄ (9), we

know that, for φ > λ̄, there exists e ∈ E such that g(φ, e) < 1. Thererfore, we

have e1(φ) < en for φ > λ̄.

For φ > λ̄, if there exists 1 ≤ i ≤ n − 1 such that e1(φ) ∈ [ei, ei+1), then we

have

χ(φ, e1(φ)) > χ(φ, ei+1) > · · · > χ(φ, en),

since (e1(φ), en] ⊂ (e1(φ), 2en) and ∂χ(φ,e)
∂e < 0 for e ∈ (e1(φ), 2en). Thus we have

χ(φ, e1) = · · · = χ(φ, ei) = χ(φ, e1(φ)) > χ(φ, ei+1) > · · · > χ(φ, en),

since χ(φ, e1) = · · · = χ(φ, ei) = χ(φ, e1(φ)) = ϑ−1(φ). If e1(φ) < e1, then we

have

χ(φ, e1) > χ(φ, e2) > · · · > χ(φ, en),

since [e1, en] ⊂ (e1(φ), 2en). �
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1.8 Proof of Lemma 3

Proof: Denote

P̄ = min
(e,e′)∈E×E

{π(e′|e)} .

Choose T such that βT < 1
4 . Let

εφ = min
{(

P̄
)T
,
β2

1 − β
χ(φ, e1) − χ(φ, en)

4

}
.

Note that εφ > 0. We denote

ᾱ = βχ(φ, et) +
β2

1 − β
χ(φ, e1) + χ(φ, en)

2
.

Then we show this lemma in two cases.

Case (i) α ≤ ᾱ. Pick event D1 =
{
et, et+ j−1 = e1 for j = 2, 3, · · · ,T + 1

}
. On

D1 we have

∞∑
j=1

χ(φ, et+ j−1)β j

= βχ(φ, et) +

∞∑
j=2

χ(φ, e1)β j −

∞∑
j=T+2

[
χ(φ, e1) − χ(φ, et+ j−1)

]
β j

≥ βχ(φ, et) +

∞∑
j=2

χ(φ, e1)β j −

∞∑
j=T+2

[
χ(φ, e1) − χ(φ, en)

]
β j

= βχ(φ, et) +
β2

1 − β
χ(φ, e1) −

βT+2

1 − β

[
χ(φ, e1) − χ(φ, en)

]
= βχ(φ, et) +

β2

1 − β
χ(φ, e1) + χ(φ, en)

2
+

β2

1 − β
χ(φ, e1) − χ(φ, en)

2

−
2βT+2

1 − β
χ(φ, e1) − χ(φ, en)

2

= βχ(φ, et) +
β2

1 − β
χ(φ, e1) + χ(φ, en)

2
+ (1 − 2βT )2

β2

1 − β
χ(φ, e1) − χ(φ, en)

4
≥ ᾱ + (1 − 2βT )2εφ

> ᾱ + εφ

≥ α + εφ.

11



We know Pr(D1|et) = Pr
(
et+ j−1 = e1 for j = 2, 3, · · · ,T + 1|et

)
≥

(
P̄
)T
≥ εφ.

Thus, Pr
(∑∞

j=1 χ(φ, et+ j−1)β j > α + εφ|et

)
≥ Pr(D1|et) ≥ εφ. We have

Pr

α ≤ ∞∑
j=1

χ(φ, et+ j−1)β j ≤ α + εφ

∣∣∣∣∣∣∣ et


≤ Pr

 ∞∑
j=1

χ(φ, et+ j−1)β j ≤ α + εφ

∣∣∣∣∣∣∣ et


= 1 − Pr

 ∞∑
j=1

χ(φ, et+ j−1)β j > α + εφ

∣∣∣∣∣∣∣ et


≤ 1 − εφ.

Case (ii) α > ᾱ. Pick event D2 =
{
et, et+ j−1 = en for j = 2, 3, · · · ,T + 1

}
. On

D2 we have

∞∑
j=1

χ(φ, et+ j−1)β j

= βχ(φ, et) +

∞∑
j=2

χ(φ, en)β j +

∞∑
j=T+2

[
χ(φ, et+ j−1) − χ(φ, en)

]
β j

≤ βχ(φ, et) +

∞∑
j=2

χ(φ, en)β j +

∞∑
j=T+2

[
χ(φ, e1) − χ(φ, en)

]
β j

= βχ(φ, et) +
β2

1 − β
χ(φ, en) +

β2βT

1 − β

[
χ(φ, e1) − χ(φ, en)

]
< βχ(φ, et) +

β2

1 − β
χ(φ, en) +

β2

1 − β
χ(φ, e1) − χ(φ, en)

2

= βχ(φ, et) +
β2

1 − β
χ(φ, e1) + χ(φ, en)

2
= ᾱ

< α.

We know Pr(D2|et) = Pr
(
et+ j−1 = en for j = 2, 3, · · · ,T + 1|et

)
≥

(
P̄
)T
≥ εφ.
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Thus, Pr
(∑∞

j=1 χ(φ, et+ j−1)β j < α|et

)
≥ Pr(D2|et) ≥ εφ. We have

Pr

α ≤ ∞∑
j=1

χ(φ, et+ j−1)β j ≤ α + εφ

∣∣∣∣∣∣∣ et


≤ Pr

 ∞∑
j=1

χ(φ, et+ j−1)β j ≥ α

∣∣∣∣∣∣∣ et


= 1 − Pr

 ∞∑
j=1

χ(φ, et+ j−1)β j < α

∣∣∣∣∣∣∣ et


≤ 1 − εφ.

�

1.9 Proof of Theorem 2

Proof: From Lemma 1 we know that limt→∞ V1(at, et) exists and is finite almost

surely for βR = 1. Suppose that Pr
(
limt→∞ V1(at, et) ≤ Rλ̄

)
< 1. Thus,

Pr
(
lim
t→∞

u1(ct, ht) ≤ λ̄
)
< 1.

Then there exists ψ > λ̄ such that we have Pr(limt→∞ u1(ct, ht) ∈ [ψ, ψ + δ]) > 0

for any δ > 0.

For any ε > 0, let η =
1−β
2β ε. We may choose φ and δ, λ̄ < φ < ψ < φ + δ,

such that Pr(limt→∞ u1(ct, ht) ∈ [φ, φ + δ]) > 0 and Pr(limt→∞ u1(ct, ht) = φ) =

Pr(limt→∞ u1(ct, ht) = φ + δ) = 0. At the same time we can have |ξ(φ, e) − ξ(φ +

δ, e)| < η

2 and |g(φ, e) − g(φ + δ, e)|ew < η

2 for all e ∈ E, since ξ(λ, e) and g(λ, e)

are uniformly continuous on interval [ψ, ψ + δ].

Define B = {limt→∞ u1(ct, ht) ∈ [φ, φ + δ]}. Define Aτ = {u1(cτ, hτ) ∈ [φ, φ +

δ]} and Bτ = {u1(ct, ht) ∈ [φ, φ + δ], t ≥ τ} for τ ≥ 0. Thus, limτ→∞ Pr(Aτ) =

Pr(B) > 0 and limτ→∞ Pr(Bτ) = Pr(B) > 0. We may choose τ < ∞ such that

Pr(Bτ) > (1 − ε) Pr(Aτ) > 0. If V1(at, et) ∈ [Rφ,R(φ + δ)], then at is bounded.

13



We have

Pr

 ∞∑
j=1

[
cτ+ j−1 − (1 − hτ+ j−1)eτ+ j−1w

]
R− j − aτ = 0

∣∣∣∣∣∣∣ Bτ

 = 1.

Thus we have

Pr


∑∞

j=1[cτ+ j−1 − ξ(φ, eτ+ j−1) +
[
hτ+ j−1 − g(φ, eτ+ j−1)

]
eτ+ j−1w]R− j

+
∑∞

j=1[ξ(φ, eτ+ j−1) −
[
1 − g(φ, eτ+ j−1)

]
eτ+ j−1w]R− j − aτ = 0

∣∣∣∣∣∣∣∣∣ Bτ

 = 1.

Since βR = 1 and we know that |ξ(φ, e) − ξ(φ + δ, e)| < η

2 and |g(φ, e) − g(φ +

δ, e)|ew < η

2 for all e ∈ E,

Pr


∣∣∣∣∑∞j=1[cτ+ j−1 − ξ(φ, eτ+ j−1) +

[
hτ+ j−1 − g(φ, eτ+ j−1)

]
eτ+ j−1w]R− j

∣∣∣∣
< β

1−βη = ε
2

∣∣∣∣∣∣∣∣∣ Bτ

 = 1.

Thus,

Pr


∣∣∣∣∣∣∣
∞∑
j=1

[ξ(φ, eτ+ j−1) − (1 − g(φ, eτ+ j−1))eτ+ j−1w]R− j − aτ

∣∣∣∣∣∣∣ < ε

2

∣∣∣∣∣∣∣ Bτ

 = 1.

Since βR = 1 and χ(φ, e) = ξ(φ, e) −
[
1 − g(φ, e)

]
ew, we have

Pr


∣∣∣∣∣∣∣
∞∑
j=1

χ(φ, eτ+ j−1)β j − aτ

∣∣∣∣∣∣∣ < ε

2

∣∣∣∣∣∣∣ Bτ

 = 1.

Let α = aτ − ε
2 . Since Bτ ⊂ Aτ and Pr(Bτ) > (1 − ε) Pr(Aτ), it follows that

Pr

α < ∞∑
j=1

χ(φ, eτ+ j−1)β j < α + ε

∣∣∣∣∣∣∣ Aτ

 > 1 − ε.

Let zτ = (e0, e1, · · · , eτ). Thus, the event

Pr

α < ∞∑
j=1

χ(φ, eτ+ j−1)β j < α + ε

∣∣∣∣∣∣∣ zτ
 > 1 − ε

has a positive probability since Aτ is measurable with respect to zτ. Note that

{et}
∞
t=0 follows a Markov chain. Thus exists eτ ∈ E such that

Pr

α < ∞∑
j=1

χ(φ, eτ+ j−1)β j < α + ε

∣∣∣∣∣∣∣ eτ
 > 1 − ε,
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which contradicts Lemma 3. Thus, we have

Pr
(
lim
t→∞

u1(ct, ht) ≤ λ̄
)

= 1.

If λ̄ > 0, then g(λ, e) = 1 for λ ∈ (0, λ̄] and all e ∈ E. Thus, we have

lim
t→∞

ht = 1 a.s.

If λ̄ = 0, then we have

lim
t→∞

V1(at, et) = 0 a.s. (A.6)

Let D = {ω : lim inft→∞ at(ω) < ∞}. For each ω ∈ D, there exists a bounded

subsequence {atk(ω)}∞k=1 and B(ω) > 0 such that atk(ω) < B(ω) for all k ≥ 0.

Suppose that the probability of D is positive, i.e., Pr(D) > 0. From Equation

(A.6), we can pick a path ω in D such that V1(atk(ω), etk(ω))→ 0 as k → ∞. For

convenience I omit ω in the following derivation. Thus, we have

V1(atk , etk) ≥ V1(B, etk) ≥ min
e∈E
{V1(B, e)} > 0,∀k ≥ 0,

We have a contradiction. Therefore, we have

lim
t→∞

at = ∞ a.s.

�

1.10 Proof of Proposition 5

Proof: From the definition of k̄ we know that h(a, e) = 1 for a ≥ k̄ > 0 and all

e ∈ E. For a ≥ k̄, suppose that

a′(a, ê(a)) = max
e∈E
{a′(a, e)} > a.

Then, we have

V1(a, ê(a)) = E[V1(a′(a, ê(a)), e′)|ê(a)] < E[V1(a, e′)|ê(a)]. (A.7)
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Now, the budget constraint (1) becomes

c(a, e) + a′(a, e) = Ra. (A.8)

Since

a′(a, ê(a)) = max
e∈E
{a′(a, e)} ≥ a′(a, e),

we have c(a, e) ≥ c(a, ê(a)) for all e ∈ E. Thus,

V1(a, ê(a)) = Ru1(c(a, ê(a)), 1) ≥ E[Ru1(c(a, e′), 1)|ê(a)] = E[V1(a, e′)|ê(a)],

which contradicts Equation (A.7). Thus, we have a(a, e) ≤ a for a ≥ k̄ and all

e ∈ E.

For a ≥ k̄, suppose that there exists e(1) ∈ E such that a
(
a, e(1)

)
< a. Then,

we have

V1

(
a, e(1)

)
≥ E

[
V1

(
a
(
a, e(1)

)
, e′

)
|e(1)

]
> E

[
V1

(
a, e′

)
|e(1)

]
.

Thus, there exists e(2) ∈ E such that V1

(
a, e(2)

)
< V1

(
a, e(1)

)
. Since

V1

(
a, e(1)

)
= Ru1

(
c
(
a, e(1)

)
, 1

)
,

and

V1

(
a, e(2)

)
= Ru1

(
c
(
a, e(2)

)
, 1

)
,

we have c
(
a, e(2)

)
> c

(
a, e(1)

)
. Therefore, a

(
a, e(2)

)
< a

(
a, e(1)

)
< a. Then, we

have

V1

(
a, e(2)

)
≥ E

[
V1

(
a
(
a, e(2)

)
, e′

)
|e(2)

]
> E

[
V1

(
a, e′

)
|e(2)

]
.

Thus, there exists e(3) ∈ E such that V1

(
a, e(3)

)
< V1

(
a, e(2)

)
< V1

(
a, e(1)

)
. Since

V1

(
a, e(2)

)
= Ru1

(
c
(
a, e(2)

)
, 1

)
,

and

V1

(
a, e(3)

)
= Ru1

(
c
(
a, e(3)

)
, 1

)
,

16



we have c
(
a, e(3)

)
> c

(
a, e(2)

)
. Thus, a′

(
a, e(3)

)
< a′

(
a, e(2)

)
< a′

(
a, e(1)

)
<

a. By induction, we have V1

(
a, e(n)

)
< · · · < V1

(
a, e(2)

)
< V1

(
a, e(1)

)
and

a′
(
a, e(n)

)
< · · · < a′

(
a, e(2)

)
< a′

(
a, e(1)

)
< a. From a′

(
a, e(n)

)
< a we know

that

V1

(
a, e(n)

)
≥ E

[
V1

(
a
(
a, e(n)

)
, e′

)
|e(n)

]
> E

[
V1

(
a, e′

)
|e(n)

]
.

This is impossible since V1

(
a, e(n)

)
< · · · < V1

(
a, e(2)

)
< V1

(
a, e(1)

)
. Thus we

know that, for a ≥ k̄, there does not exist e ∈ E such that a (a, e) < a. Then, we

have a(a, e) = a for a ≥ k̄ and all e ∈ E.

From the budget constraint (A.8) we have c(a, e) = (R − 1)a = ra for a ≥ k̄

and all e ∈ E.

The borrowing constraint implies that at+1 ≥ 0 for all t ≥ 0. Since a′
(
k̄, e

)
=

k̄ for all e ∈ E, we know that

a′(a, e) ≤ a′
(
k̄, e

)
= k̄,

for a ≤ k̄ and all e ∈ E, from part 3) of Proposition 2. If a0 ∈ [0, k̄], a1 =

a′ (a0, e0) ≤ k̄. Thus a2 = a′ (a1, e1) ≤ k̄. By induction, we have at ≤ k̄ for all

t ≥ 1. Thus, at ∈ [0, k̄] for all t ≥ 0.

If a0 ≤ k̄, wealth accumulation is bounded. Thus we have limt→∞ ht = 1

almost surely from Theorem 2. Consequently, we have

Pr
({
ω : lim inf

t→∞
ht(ω) < 1

})
= 0.

Let A =
{
ω : lim inft→∞ at(ω) = a∗(ω) < k̄

}
. Since a∗(ω) < k̄, there exists e∗ ∈ E

such that h(a∗(ω), e∗) < 1. We know that Pr
(
et = e infinitely often

)
= 1 for each

e ∈ E. Since h(a, e) is continuous in a by part 1) of Proposition 3, we have

A ⊂ {ω : lim inft→∞ ht(ω) < 1}. Thus,

Pr(A) ≤ Pr
({
ω : lim inf

t→∞
ht(ω) < 1

})
= 0.
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We have Pr(A) = 0. Thus,

Pr
({
ω : lim inf

t→∞
at(ω) ≥ k̄

})
= 1.

Therefore, we have limt→∞ at = k̄ almost surely.

From part 2) of Proposition 3 we know that k̄ < ∞ in Case A) of Assumption

5. �

1.11 Proof of Proposition 6

Proof: If k̄ < ∞, from Proposition 5, we know that Pr
(
{(at, et)}∞t=0 is bounded

)
=

1. Thus, limt→∞ at = ∞ almost surely implies that k̄ = ∞.

To prove the other direction, note that Pr(limt→∞ at = ∞) < 1 implies that

Pr(limt→∞ ht = 1) = 1 from Theorem 2. Let D = {ω : lim inft→∞ at(ω) < ∞}.

Thus, Pr(D) = 1−Pr(limt→∞ at = ∞) > 0. We know that Pr
(
et = e infinitely often

)
=

1 for each e ∈ E. Thus we can find ω ∈ D such that, for each e ∈ E,

there exists a subsequence {
(
atek

(ω), etek
(ω)

)
}∞k=1, limk→∞ atek

(ω) = B(e) < ∞,

limk→∞ h
[
atek

(ω), etek
(ω)

]
= 1, and etek

(ω) = e for all k ≥ 1. From part 1) of

Proposition 3 we know that h(a, e) is continuous and increasing in a. Thus we

have h(a, e) = 1 for a ≥ B(e) and e ∈ E. Thus, k̄ < ∞. Therefore, k̄ = ∞ implies

that limt→∞ at = ∞ almost surely. �

1.12 Proof of Lemma 4

Proof: For a > 0, suppose that a′(a, e) ≥ a for all e ∈ E. Then we have

a′(a, e) ≥ a > 0,

for all e ∈ E. Thus,

V1(a, e) = βRE[V1(a′(a, e), e′)|e] ≤ βRE[V1(a, e′)|e] < E[V1(a, e′)|e], (A.9)
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for all e ∈ E.

Pick e(1) ∈ E. By Equation (A.9) we have

V1

(
a, e(1)

)
< E

[
V1

(
a, e′

)
|e(1)

]
.

Thus there exists e(2) ∈ E such that V1

(
a, e(1)

)
< V1

(
a, e(2)

)
. It follows from

Equation (A.9) that

V1

(
a, e(2)

)
< E

[
V1

(
a, e′

)
|e(2)

]
.

Thus there exists e(3) ∈ E such that V1

(
a, e(1)

)
< V1

(
a, e(2)

)
< V1

(
a, e(3)

)
. By

induction, we have V1

(
a, e(1)

)
< V1

(
a, e(2)

)
< · · · < V1

(
a, e(n)

)
.

However, Equation (A.9) also implies that

V1

(
a, e(n)

)
< E

[
V1

(
a, e′

)
|e(n)

]
.

This is impossible since V1

(
a, e(1)

)
< V1

(
a, e(2)

)
< · · · < V1

(
a, e(n)

)
. Therefore,

for a > 0, there exists e ∈ E such that a′(a, e) < a. �

1.13 Proof of Proposition 7

Proof: For a ≥ k̄, suppose that

a′(a, ê(a)) = max
e∈E
{a′(a, e)} ≥ a.

Thus we have

V1(a, ê(a)) = βRE[V1(a′(a, ê(a)), e′)|ê(a)]

≤ βRE[V1(a, e′)|ê(a)] < E[V1(a, e′)|ê(a)], (A.10)

since βR < 1.

We know that h(a, e) = 1 for a ≥ k̄ and all e ∈ E, by part 2) of Proposition

3. Thus, the budget constraint (1) becomes

c(a, e) + a′(a, e) = Ra, a ≥ k̄.
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We have c(a, e) ≥ c(a, ê(a)) for a ≥ k̄ and all e ∈ E since

a′(a, ê(a)) = max
e∈E
{a′(a, e)} ≥ a′(a, e).

By Lemma 4, there exists ẽ ∈ E such that a′(a, ẽ) < a. We have c(a, ẽ) >

c(a, ê(a)), since

a′(a, ê(a)) ≥ a > a′(a, ẽ).

Thus we have

V1(a, ê(a)) = Ru1(c(a, ê(a)), 1) > E[Ru1(c(a, e′), 1)|ê(a)] = E[V1(a, e′)|ê(a)],

which contradicts Equation (A.10). Thus, we have a′(a, e) < a for a ≥ k̄ and all

e ∈ E.

From part 2) of Proposition 3 we know that k̄ < ∞ in Case A) of Assumption

5. �

1.14 Proof of Theorem 3

Proof: If Case A) of Assumption 5 holds, we pick kb = k̄. If Case B) of As-

sumption 5 holds, we know from Proposition 8 that there exists kb > 0 such that

a′(a, e) < a for all a ≥ kb and e ∈ E.

Note that a0 ≤ max
{
kb, a0

}
. From Propositions 7 and 8, we know that

a′
(
kb, e

)
< kb for all e ∈ E. From part 3) of Proposition 2 we have

a′(a, e) ≤ a′
(
kb, e

)
< kb,

for a ≤ kb and all e ∈ E. Thus,

at+1 = a′ (at, et) ≤ kb, if at ≤ kb. (A.11)

If kb < at ≤ a0, at+1 = a′ (at, et) < at ≤ a0, by Propositions 7 and 8. Thus,

at ≤ max
{
kb, a0

}
implies that at+1 ≤ max

{
kb, a0

}
. By mathematical induction,

we have at ≤ max
{
kb, a0

}
for all t ≥ 0.
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Case (i) a0 ≤ kb. We have at ≤ kb for all t ≥ 0. Thus,

Pr
(
at ≤ kb, ∀t ≥ 0

)
= 1.

Case (ii) a0 > kb. Define θ = min
{
a − â(a) : a ∈ [kb, a0]

}
> 0. The relation-

ship (A.11) implies that the wealth accumulation process {at}
∞
t=0 stays in [0, kb]

if it reaches the interval. Additionally, we know that â(a) < a if a ≥ kb. Given

at ≥ kb, at decreases by at least θ in one step. Thus, starting from a0, the process

{at}
∞
t=0 reaches [0, kb] in at most

[
a0−kb

θ

]
+ 1 steps. Then it stays in [0, kb]. Thus,

Pr
(
at ≤ kb, ∀t ≥

[
a0 − kb

θ

]
+ 1

)
= 1.

Combining Cases (i) and (ii), we have

Pr
(
at ≤ kb, ∀t ≥ I

)
= 1,

where

I =


0, if a0 ≤ kb[

a0−kb

θ

]
+ 1, if a0 > kb

.

�

1.15 Proof of Proposition 9

Proof: From the definition ā in Section 2.3 we know that a′ (ā, e) ≤ â (ā) = ā

for all e ∈ E. If at ≤ ā,

at+1 = a′ (at, et) ≤ a′ (ā, et) ≤ ā.

Thus we have

Pr ((at, et) ∈ S ,∀t ≥ T | (aT , eT ) ∈ S ) = 1. (A.12)

Equation (A.12) implies that the process {(at, et)}∞t=0 stays in S if it reaches S .

Case (i) (a0, e0) ∈ S . Thus, T = 0 in Equation (A.12). We have

Pr ((at, et) ∈ S ,∀t ≥ 0| (a0, e0) ∈ S ) = 1.
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Case (ii) (a0, e0) < S . From Proposition 3 we know that there exists I ≥ 1

such that

Pr
(
(at, et) ∈ [0, k̄] × E, ∀t ≥ I

)
= 1.

Let

ǎ(a) = min
e∈E
{a′(a, e)}.

Thus, ǎ(a) is continuous in a since a′(a, e) is continuous in a by part 3) of Propo-

sition 2. By Lemma 4, we have ǎ(a) < a for all a > 0. Let γ = min{a − ǎ(a) :

a ∈ [ā, k̄]}. Thus, γ > 0. Given at ∈ [ā, k̄], at could decrease by at least γ in one

step. Let

q =

[
k̄ − ā
γ

]
+ 1.

From Proposition 3 and the Markov property of the process {(at, et)}∞t=0, we know

that the process stays in [0, k̄] × E if it reaches [0, k̄] × E. We have

(ā, k̄] × E =
{
(a, e) : (a, e) ∈ [0, k̄] × E and (a, e) < S

}
.

For any (a, e) ∈ (ā, k̄] × E, we can pick the realization sequence of labor effi-

ciency shocks e′s such that (a, e) moves along (ǎ(a), e) to reach S in at most q

steps. Let

P̄ = min
(e,e′)∈E×E

{π(e′|e)}.

For any j ≥ 1 we know that

Pr
(
∃ ( j + 1) ≤ t ≤ ( j + q) , such that (at, et) ∈ S |

(
a j, e j

)
∈ (ā, k̄] × E

)
>

(
P̄
)q
.

Thus we have

Pr
(
(at, et) ∈ (ā, k̄] × E, t = j + 1, j + 2, · · · , j + q

∣∣∣ (a j, e j

)
∈ (ā, k̄] × E

)
= 1 − Pr

(
∃ ( j + 1) ≤ t ≤ ( j + q) , such that (at, et) ∈ S |

(
a j, e j

)
∈ (ā, k̄] × E

)
≤ 1 −

(
P̄
)q
.
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Then, we know that

Pr ((at, et) < S ,∀t ≥ 1| (a0, e0) < S )

= Pr
(
(at, et) ∈ (ā, k̄] × E,∀t ≥ I

∣∣∣ (a0, e0) < S
)

≤ Pr
(
(at, et) ∈ (ā, k̄] × E, t = I, I + 1, · · · , I + nq

∣∣∣ (a0, e0) < S
)

= Pr
(
(aI , eI) ∈ (ā, k̄] × E

∣∣∣ (a0, e0) < S
)

×Pr
(
(at, et) ∈ (ā, k̄] × E, t = I + 1, I + 2, · · · , I + q

∣∣∣ (aI , eI) ∈ (ā, k̄] × E
)

×Pr
(
(at, et) ∈ (ā, k̄] × E, t = I + q + 1, I + q + 2, · · · , I + 2q

∣∣∣ (aI+q, eI+q

)
∈ (ā, k̄] × E

)
× · · ·

×Pr

 (at, et) ∈ (ā, k̄] × E,

t = I + (n − 1)q + 1, · · · , I + nq

∣∣∣∣∣∣∣∣∣
(
aI+(n−1)q, eI+(n−1)q

)
∈ (ā, k̄] × E


≤ Pr

(
(at, et) ∈ (ā, k̄] × E, t = I + 1, I + 2, · · · , I + q

∣∣∣ (aI , eI) ∈ (ā, k̄] × E
)

×Pr
(
(at, et) ∈ (ā, k̄] × E, t = I + q + 1, I + q + 2, · · · , I + 2q

∣∣∣ (aI+q, eI+q

)
∈ (ā, k̄] × E

)
× · · ·

×Pr

 (at, et) ∈ (ā, k̄] × E,

t = I + (n − 1)q + 1, · · · , I + nq

∣∣∣∣∣∣∣∣∣
(
aI+(n−1)q, eI+(n−1)q

)
∈ (ā, k̄] × E


≤

[
1 −

(
P̄
)q]n

.

Letting n→ ∞, we have

Pr ((at, et) < S ,∀t ≥ 1| (a0, e0) < S ) = 0.

Thus, we know that

Pr (∃T ≥ 1, such that (aT , eT ) ∈ S | (a0, e0) < S )

= 1 − Pr ((at, et) < S ,∀t ≥ 1| (a0, e0) < S )

= 1.

�
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1.16 Proof of Lemma 5

Proof: Suppose that a′(a, e) > 0 for a > 0 and all e ∈ E. Thus, for a0 > 0, we

have

V1(a0, e0) = (βR)tE0V1(at, et),∀t ≥ 0.

Note that V1(a0, e0) > 0. The right-hand side of this equation approaches 0 as

t → ∞, since βR < 1 and V1(a, e) < V1(0, e) < ∞ for a > 0 and all e ∈ E. We

have a contradiction. Thus, there exist ã > 0 and ẽ ∈ E such that a′(ã, ẽ) = 0.

From part 3) of Proposition 2, we know that a′(a, ẽ) is weakly increasing in a.

Thus, we have a′(a, ẽ) = 0 for a ∈ [0, ã]. �

1.17 Proof of Theorem 4

Proof: By Theorem 16.0.2 posited by Meyn and Tweedie (2009), {(at, et)}∞t=0 is

uniformly ergodic if the state space S is vm−small for some m.

Definition 1 A set C ∈ B(S ) is called a small set if there exists m > 0 and

non-trivial measure vm on B(S ) such that Pm(s, B) ≥ vm(B) for all s ∈ C and

B ∈ B(S ).

Let ǎ(a) = mine∈E{a′(a, e)}. Thus, ǎ(a) is continuous in a since a′(a, e) is

continuous in a by part 3) of Proposition 2. By Lemma 4, we have ǎ(a) < a for

all a > 0. By Lemma 5, there exists ã > 0 such that ǎ(a) = 0 for a ≤ ã. Let

κ = min{a − ǎ(a) : a ∈ [ã, ā]}. Thus, κ > 0. Let

m =

[ ā
κ

]
+ 1,

and

P̄ = min
(e,e′)∈E×E

{π(e′|e)}.
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Define a non-trivial measure vm on B(S ) as, for all B ∈ B(S ),

vm(B) =


(
P̄
)m
, if (0, ẽ) ∈ B

0, if (0, ẽ) < B
,

where ẽ is defined in Lemma 5.

For all s ∈ S , we can pick the realization sequence of labor efficiency shocks

e′s such that (a, e) moves along (ǎ(a), e) to reach state s∗ = (0, ẽ) in at most m

steps. Thus we have Pm(s, B) ≥ vm(B) for all s ∈ S and B ∈ B(S ). We conclude

that S is vm−small.

Let ρ = [1 − vm(S )]
1
m . Thus, we obtain the results of Theorem 4 through

using Theorem 16.0.2 presented by Meyn and Tweedie (2009). �

1.18 Proof of Proposition 10

Proof: From Theorem 4 we know that the process {(at, et)}∞t=0 has a unique sta-

tionary distribution µ on S . By Theorem 17.0.1 posited by Meyn and Tweedie

(2009), the Law of Large Numbers holds for any B(S )−measurable function f

satisfying
∫

S
| f |dµ < ∞, if {(at, et)}∞t=0 is a positive Harris chain.1 From their

Theorem 18.0.2, we know that {(at, et)}∞t=0 is a positive Harris chain if it satisfies

the following three conditions:

1) {(at, et)}∞t=0 is a T−chain,2

2) There exists a reachable state s∗, and

3) {(at, et)}∞t=0 is bounded.3

By Theorem 6.2.5 posited by Meyn and Tweedie (2009), {(at, et)}∞t=0 is a

T−chain if every compact set is petite. A slight change in Proof of Theorem 4

can show that every compact set of S is a small set. By Proposition 5.5.3 posited

1For the definition of positive Harris chains, see Meyn and Tweedie (2009) (page 231).
2For the definition of T−chains, see Meyn and Tweedie (2009) (page 124).
3Actually, the theorem only requires it to be bounded in probability.
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by Meyn and Tweedie (2009), every small set is a petite set.4 Thus, {(at, et)}∞t=0

is a T−chain. Condition 1) is verified.

From Proof of Theorem 4, we know that s∗ = (0, ẽ), where ẽ is defined in

Lemma 5, and is a reachable state. Thus, condition 2) is satisfied.

Condition 3) is obviously satisfied since S is compact. �

1.19 Proof of Proposition 11

Proof: Let s∗ = (0, ẽ), where ẽ is defined in Lemma 5. Furthermore, let

τs∗ = min{t ≥ 1 : (at, et) = s∗}.

By Theorem 10.2.2 (Kac’s Theorem) proposed by Meyn and Tweedie (2009),

Es∗[τs∗] < ∞, and µ(s∗) = (Es∗[τs∗])−1 if {(at, et)}∞t=0 is ψ−irreducible and positive

recurrent. From Proof of Proposition 10 we know that {(at, et)}∞t=0 is a T−chain

and s∗ is a reachable state. By Proposition 6.2.1 posited by Meyn and Tweedie

(2009), {(at, et)}∞t=0 is ψ−irreducible. From Proof of Proposition 10 we know that

{(at, et)}∞t=0 is positive Harris recurrent. Thus, it is positive recurrent. Therefore,

we have

µ({(a, e) : a = 0}) ≥ µ(s∗) = (Es∗[τs∗])−1 > 0.

�

1.20 Proof of Lemma 6

Proof: Since f (x) is a continuous function of x ∈ [b, d], it is uniformly con-

tinuous on [b, d]. Thus, for any ε > 0, there exists a subdivision of [b, d],

such that b = ξ0 < ξ1 < ξ2 < · · · < ξm(ε) = d and 0 ≤ f (ξi+1) − f (ξi) < ε
2

for 0 ≤ i ≤ m(ε). For any x ∈ [b, d], there exists i(x) such that 0 ≤ i(x) <

4For the definition of petitle sets, see Meyn and Tweedie (2009) (page 117).
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m(ε) and ξi(x) ≤ x ≤ ξi(x)+1. Since fn(s) is weakly increasing in x, we have

fn(ξi(x)) − f (x) ≤ fn(x) − f (x) ≤ fn(ξi(x)+1) − f (x). Thus, | fn(x) − f (x)| ≤

max{| fn(ξi(x))− f (x)|, | fn(ξi(x)+1)− f (x)|}. For any 0 ≤ i ≤ m(ε), there exists Ni such

that | fn(ξi) − f (ξi)| < ε
2 for all n > Ni, since limn→∞ fn(x) = f (x) for x ∈ [b, d].

Let N = max{N0,N1, · · · ,Nm(ε)}. Thus n > N implies that | fn(ξi) − f (ξi)| < ε
2 for

any 0 ≤ i ≤ m(ε). We have | fn(ξi(x))− f (x)| ≤ | fn(ξi(x))− f (ξi(x))|+| f (ξi(x))− f (x)| <

ε
2 + ε

2 = ε. Similarly, | fn(ξi(x)+1)− f (x)| < ε. Therefore, we have | fn(x)− f (x)| < ε

for all x ∈ [b, d]. Consequently, we know that { fn}n=1∞ converges uniformly to

f . �

1.21 Proof of Proposition 12

Proof: I study the household’s problem in two steps. In step 1, I solve an in-

tratemporal problem. And, in step 2, I solve an intertemporal problem. In step 1,

we know that J(y, q), cs(y, q), and hs(y, q) are continuous functions of y and q, by

the Theorem of the Maximum. In step 2, we know that V(a, e; w, r), y(a, e; w, r),

and a′(a, e; w, r) are continuous functions of a, e, w, and r, by Theorem 1 posited

by Dutta et al. (1994). Thus,

c(a, e; w, r) = cs [y(a, e; w, r), ew
]

is continuous in a, e, w, and r,

and

h(a, e; w, r) = hs [y(a, e; w, r), ew
]

is continuous in a, e, w, and r.

The firm’s profit-maximization conditions in Section 3.1 determine a continuous

function w(r) between wage rate w and interest rate r. Thus, we know that

c(s; r), h(s; r), and a′(s; r) are continuous in s and r, where s = (a, e). �

1.22 Proof of Lemma 7

Proof: We prove this lemma in two cases.
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Case A) of Assumption 5 holds.

For r0 ∈ (−1, r̄), there exists 0 < k̄(r0) < ∞ such that h (a, e; r0) = 1 for

a ≥ k̄(r0) and all e ∈ E. Thus we have

u2 [c (a, e; r0) , 1]
u1 [c (a, e; r0) , 1]

≥ ew,∀e ∈ E,

for a ≥ k̄(r0). We know that u2(c,1)
u1(c,1) is strictly increasing in c since u21u1 −

u11u2 > 0 by Assumption 2. From part 1) of Proposition 3, we know that

lima→∞ c (a, e; r0) = ∞. Thus, we can pick a sufficiently large kM(r0) > k̄(r0)

such that
u2

[
c
(
kM(r0), e; r0

)
, 1

]
u1

[
c (kM(r0), e; r0) , 1

] > ew,∀e ∈ E.

From Proposition 12, we know that c(a, e; r) is continuous in r. Therefore, we

could find ε > 0 such that, for r ∈ (r0 − ε, r0 + ε), we have

u2

[
c
(
kM(r0), e; r

)
, 1

]
u1

[
c (kM(r0), e; r) , 1

] > ew,∀e ∈ E.

Thus, we have h
[
kM(r0), e; r

]
= 1 for all e ∈ E. By the definition of k̄ in Equation

(6), we know that k̄(r) ≤ kM(r0), for r ∈ (r0 − ε, r0 + ε). From the definition of ā

in Equation (11), we know that ā(r) < k̄(r), for r ∈ (−1, r̄). Thus, ā(r) < k̄(r) <

kM(r0), for r ∈ (r0−ε, r0 +ε). For all r ∈ (r0−ε, r0 +ε), we find a uniform upper

bound kM(r0) for asset accumulation such that [0, ā(r)] ⊂ [0, kM(r0)].

Case B) of Assumption 5 holds.

We want to show that there exists ε > 0 and 0 < kM(r0) < ∞ for r0 ∈ (−1, r̄)

such that {µ(r) : r ∈ (r0 − ε, r0 + ε)} has common bounded support [0, kM(r0)] ×

E. Suppose that, for some e ∈ E, we can pick sequence {(am, rm)}∞m=1 such that
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a′(am, e; rm) ≥ am, limm→∞ am = ∞, and limm→∞ rm = r0. Thus, we have

c(am, e; rm) = (1 + rm)am − a′(am, e; rm) + (1 − hm)ew(rm)

≤ (1 + rm)am − am + (1 − hm)ew(rm)

= rmam + (1 − hm)ew(rm)

≤ rmam + ew(rm).

We have either limm→∞ rmam = ∞ or lim infm→∞ rmam = B < ∞.

If there exists B < ∞ such that lim infm→∞ rmam = B, then we can find a

subsequence
{
(ami , rmi)

}∞
i=1 such that rmiami < B + 1 for i ≥ 1. Thus, we have

c(ami , e; rmi) ≤ B+1+ew(rmi) for i ≥ 1. For ε > 0 we can find integer I > 0 such

that rmi ∈ (r0−ε, r0 +ε) for all i ≥ I. Denote w̄ = max {w(r) : r ∈ [r0 − ε, r0 + ε]}.

We know that w̄ < ∞ since w(r) is continuous in r. From part 1) of Proposition 3,

we know that lima→∞ c(a, e; r0) = ∞. Thus we can find A such that c(A, e; r0) >

B + 1 + ew̄. Since limi→∞ ami = ∞, there exits integer Ĩ > 0 such that ami > A for

all i ≥ Ĩ. Thus we have c(ami , e; rmi) ≥ c(A, e; rmi) for all i ≥ Ĩ. Since c(A, e; r)

is continuous in r from Proposition 12, we can find î ≥ max
{
I, Ĩ

}
such that

c(A, e; rmı̂
) > B + 1 + ew̄. Therefore,

c(ami , e; rmı̂
) ≥ c(A, e; rmı̂

) > B + 1 + ew̄ ≥ B + 1 + ew(rmı̂
) ≥ c(amı̂

, e; rmı̂
).

We have a contradiction.

If limm→∞ rmam = ∞, then we have r0 > 0. Thus we could find ε > 0 such

that r0−ε > 0 and β(1+r0 +ε) < 1. Denote w̄ = max {w(r) : r ∈ [r0 − ε, r0 + ε]}.

Thus we have rmam + ew(rm) ≤ rmam + ew̄. Letting ∆ = 0 in Case B) of Assump-

tion 5, we have

Ψ(c, 0) = max
h,h′∈[0,1]

{
u1(c, h′)
u1(c, h)

}
.

Thus, for ε̄ = 1
2

(
1

β(1+r0+ε) − 1
)
, there exists C > 0 such that

u1(c, h′)
u1(c, h)

< 1 + ε̄,∀h, h′ ∈ [0, 1],
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for all c ≥ C. From Proof of Proposition 8, we know that there exists

A =
C

r0 − ε
> 0,

such that

c(a, e; r) ≥ ra,∀e ∈ E,∀a ≥ A,∀r ∈ (r0 − ε, r0 + ε).

Thus we have a′(am, e; rm) ≥ am ≥ A > 0 for am ≥ A. Therefore, we know that

c(a′(am, e; rm), e′; rm) ≥ rma′(am, e; rm) ≥ rmam,∀e ∈ E,

for am ≥ A and rm ∈ (r0 − ε, r0 + ε). Consequently, we have

Φ [c(am, e; rm), ew(rm)] = β(1 + rm)E
[
Φ(c(a′(am, e; rm), e′; rm), e′w(rm))|e

]
≤ β(1 + rm)E

[
Φ(rmam, e′w(rm))|e

]
.

Thus,

Φ [rmam + ew̄, ew(rm)] ≤ Φ [rmam + ew(rm), ew(rm)]

≤ Φ [c(am, e; rm), ew(rm)]

≤ β(1 + rm)E
[
Φ(rmam, e′w(rm))|e

]
.

Therefore, we have

E
[

Φ [rmam, e′w(rm)]
Φ [rmam + ew̄, ew(rm)]

∣∣∣∣∣ e] ≥ 1
β(1 + rm)

≥
1

β(1 + r0 + ε)
,

which implies that there exists e′ ∈ E and a subsequence
{
(ami , rmi)

}∞
i=1 such that

max
h,h′∈[0,1]

{
u1(rmiami , h

′)
u1(rmiami + ew̄, h)

}
≥

u1
[
rmiami , j(rmiami , e

′w(rmi))
]

u1
[
rmiami + ew̄, j(rmiami + ew̄, ew(rmi))

]
≥

1
β(1 + r0 + ε)

> 1,

since E is a finite set. Therefore, we have

lim sup
c→∞

Ψ(c, ew̄) ≥
1

β(1 + r0 + ε)
> 1,
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which contradicts Case B) of Assumption 5.

Consequently, we know that there exists ε > 0 and 0 < kM(r0) < ∞ for

r0 ∈ (−1, r̄) such that

a′(a, e; r) < a,∀e ∈ E,∀a ≥ kM(r0),

for all r ∈ (r0 − ε, r0 + ε). From Propoposition 8 and the definiton of ā in

Equation (11), we know that ā(r) < kM(r0), for r ∈ (r0 − ε, r0 + ε). For all

r ∈ (r0 − ε, r0 + ε), we find a uniform upper bound kM(r0) for asset accumulation

such that [0, ā(r)] ⊂ [0, kM(r0)].

Now we extend measure µ(r) from [0, ā(r)] × E to [0, kM(r0)] × E. The

unique stationary distribution on [0, kM(r0)]×E is constructed by combining the

stationary distribution µ(r) on [0, ā(r)]×E and zero measure on (ā(r), kM(r0)]×E.

Without causing confusion, I still use µ(r) to represent the unique stationary

distribution with extended support. Now the collection of the extended measure,

{µ(r) : r ∈ (r0 − ε, r0 + ε)}, has common bounded support [0, kM(r0)] × E. �

1.23 Proof of Theorem 6

Proof: From Lemma 7, we know that there exists kM(r0) for each r0 ∈ (−1, r̄),

such that [0, kM(r0)] × E containing S = [0, ā(r)] × E for all r ∈ (r0 − ε, r0 + ε).

Thus, [0, kM(r0)]×E is a common bounded support for {µ(r) : r ∈ (r0 − ε, r0 + ε)},

and µ(r) is the unique stationary distribution on [0, kM(r0)]×E for r ∈ (r0−ε, r0+

ε). We use Theorem 12.13 presented by Stokey and Lucas (1989) to show that

{µ(rm)}∞m=1 converges weakly to µ(r0) as rm → r0.

Verification of Conditions (a), (b), and (c) of Theorem 12.13 posited by

Stokey and Lucas (1989)

Condition (a) is satisfied since [0, kM(r0)] × E is compact.

For sequence {(sm, rm)}∞m=1 where sm = (am, em), suppose that (sm, rm) →
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(s0, r0), where s0 = (a0, e0), as m→ ∞. For any bounded continuous function f

on [0, kM(r0)] × E, we have∫
[0,kM(r0)]×E

f (s′)Prm(sm, s′)

=

∫
[0,kM(r0)]×E

f (a′, e′)Prm

[
(am, em), (a′, e′)

]
=

∫
E

f
[
a′(am, em; rm), e′

]
P(em, e′)

=

n∑
i=1

f
[
a′(am, em; rm), ei

]
π(ei|em),

since P(em, e′) = π(e′|em) for all e′ ∈ E by Assumption 4. We have em = e0 for

all large enough m′s since E is a finite set. Thus, we have

lim
m→∞

∫
[0,kM(r0)]×E

f (s′)Prm(sm, s′)

= lim
m→∞

n∑
i=1

f
[
a′(am, em; rm), ei

]
π(ei|em)

= lim
m→∞

n∑
i=1

f
[
a′(am, e0; rm), ei

]
π(ei|e0)

=

n∑
i=1

f
[
a′(a0, e0; r0), ei

]
π(ei|e0),

where the last line uses that fact that f
[
a′(a, e0; r), ei

]
is a continuous function

of (a, r) for all 1 ≤ i ≤ n. This is true since f (a′, e′) is continuous in (a′, e′) and,

due to Proposition 12, a′(a, e; r) is a continuous function of (a, e, r). Therefore,

we have

lim
m→∞

∫
[0,kM(r0)]×E

f (s′)Prm(sm, s′)

=

n∑
i=1

f
[
a′(a0, e0; r0), ei

]
π(ei|e0)

=

∫
E

f
[
a′(a0, e0; r0), e′

]
P(e0, e′)

=

∫
[0,kM(r0)]×E

f (a′, e′)Pr0

[
(a0, e0), (a′, e′)

]
=

∫
[0,kM(r0)]×E

f (s′)Pr0(s0, s′).

32



Thus,
{
Prm(sm, ·)

}∞
m=1 converges weakly to Pr0(s0, ·). Condition (b) is satisfied.

Condition (c) is satisfied since µ(rm) is the unique stationary distribution on

[0, kM(r0)] × E for each m ≥ 1.

Thus Theorem 12.13 posited by Stokey and Lucas (1989) implies that {µ(rm)}∞m=1

converges weakly to µ(r0) as rm → r0. Thus, we have

lim
m→∞

∫
[0,kM(r0)]×E

adµ(rm) =

∫
[0,kM(r0)]×E

adµ(r0).

We know that
∫

[0,kM(r0)]×E
adµ(r) =

∫
S

adµ(r) = A(r) for all r ∈ (r0 − ε, r0 + ε)

since µ((ā(r), kM(r0)] × E) = 0. Therefore, we have limm→∞ A(rm) = A(r0).

Since µ((ā(r), kM(r0)] × E) = 0, we have

L(rm) =

∫
S

e [1 − h(s; rm)] dµ(rm)

=

∫
[0,kM(r0)]×E

e [1 − h(s; rm)] dµ(rm)

=

∫
[0,kM(r0)]×E

edµ(rm) −
∫

[0,kM(r0)]×E
eh(s; rm)dµ(rm).

The first term
∫

[0,kM(r0)]×E
edµ(rm) converges to

∫
[0,kM(r0)]×E

edµ(r0) as rm → r0,

since µ(rm) converges weakly to µ(r0) as rm → r0. We only need to show that∫
[0,kM(r0)]×E

eh(s; rm)dµ(rm) →
∫

[0,kM(r0)]×E
eh(s; r0)dµ(r0) as rm → r0. For fixed

e ∈ E, h(a, e; rm) is a function on [0, kM(r0)]. By part 1) of Proposition 3, Lemma

6, and Proposition 12, h(a, e; rm) uniformly converges to h(a, e; r0) as rm → r0.

Thus, for δ > 0, we have

max
a∈[0,kM]

|h(a, e; rm) − h(a, e; r0)| <
δ

2en ,∀e ∈ E,

for sufficiently large m. Therefore, we have

max
(a,e)∈[0,kM]×E

{e|h(a, e; rm) − h(a, e; r0)|} <
δ

2
,

for sufficiently large m. We also have∣∣∣∣∣∣
∫

[0,kM(r0)]×E
eh(a, e; r0)dµ(rm) −

∫
[0,kM(r0)]×E

eh(a, e; r0)dµ(r0)

∣∣∣∣∣∣ < δ

2
,
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for sufficiently large m, since eh(a, e; r0) is a bounded continuous function on

[0, kM] × E and µ(rm) converges weakly to µ(r0) as rm → r0. Thus, we have∣∣∣∣∣∣
∫

[0,kM(r0)]×E
eh(a, e; rm)dµ(rm) −

∫
[0,kM(r0)]×E

eh(a, e; r0)dµ(r0)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

[0,kM(r0)]×E
eh(a, e; rm)dµ(rm) −

∫
[0,kM(r0)]×E

eh(a, e; r0)dµ(rm)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫

[0,kM(r0)]×E
eh(a, e; r0)dµ(rm) −

∫
[0,kM(r0)]×E

eh(a, e; r0)dµ(r0)

∣∣∣∣∣∣
≤

∫
[0,kM(r0)]×E

e|h(a, e; rm) − h(a, e; r0)|dµ(rm)

+

∣∣∣∣∣∣
∫

[0,kM(r0)]×E
eh(a, e; r0)dµ(rm) −

∫
[0,kM(r0)]×E

eh(a, e; r0)dµ(r0)

∣∣∣∣∣∣
<

∫
[0,kM(r0)]×E

δ

2
dµ(rm) +

δ

2

=
δ

2
+
δ

2
= δ,

for sufficiently large m. Thus we know that
∫

[0,kM(r0)]×E
eh(s; rm)dµ(rm)→

∫
[0,kM(r0)]×E

eh(s; r0)dµ(r0)

as rm → r0. Therefore, limm→∞ L(rm) = L(r0). �

1.24 Proof of Proposition 13

Proof: From Proposition11, we have µr({(a, e) : a = 0}) > 0 for r ∈ (−1, r̄).

By Assumption 2 we know that h(0, e; r) < 1 for all e ∈ E. Thus, L(r) > 0 for

r ∈ (−1, r̄). Since

ζ(r) =
A(r)
L(r)

,

we know that ζ(r) is a continuous function of r ∈ (−1, r̄).

From Proposition 6 we know that either Pr(limt→∞ at = ∞) = 1 or Pr
(
{(at, et)}∞t=0 is bounded

)
=

1 for βR = 1. We discuss the limit of ζ(r) as r ↑ r̄ in these two situations.

Pr(limt→∞ at = ∞) = 1 for βR = 1.

In this case we want to show that limr↑r̄ A(r) = ∞. Suppose that this is

not true. Then there exists B > 0 and sequence {rm}
∞
m=1 such that rm ↑ r̄ and
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A(rm) < B for all m ≥ 1. Thus, for any k̂ > 0, we have

k̂µrm

{
(a, e) : a > k̂

}
≤

∫
(k̂,∞)×E

adµ(rm)

≤

∫
[0,∞)×E

adµ(rm)

=

∫
S

adµ(rm)

= A(rm)

< B,

for all m ≥ 1. Thus, we have

µrm

{
(a, e) : a > k̂

}
<

B

k̂
,∀m ≥ 1.

We thus know that {µ(rm)}∞m=1 is tight. Condition (d) of Theorem 7 holds.

Conditions (a) and (c) of Theorem 7 obviously hold. We can also ver-

ify condition (b) of Theorem 7, using the same procedure as that in Proof

of Theorem 6. For sequence {(xm, rm)}∞m=1 where xm = (am, em), suppose that

limm→∞ xm = x0 = (a0, e0) and rm ↑ r̄ . For any bounded continous function f

on [0,∞) × E, we have

lim
m→∞

∫
[0,∞)×E

f (x′)Prm(xm, x′)

=

n∑
i=1

f
[
a′(a0, e0; r̄), ei

]
π(ei|e0)

=

∫
E

f
[
a′(a0, e0; r̄), e′

]
P(e0, e′)

=

∫
[0,∞)×E

f (a′, e′)Pr̄
[
(a0, e0), (a′, e′)

]
=

∫
[0,∞)×E

f (x′)Pr̄(x0, x′).

Thus,
{
Prm(xm, ·)

}∞
m=1 converges weakly to Pr̄(x0, ·). Condition (b) is satisfied.
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Thus, from Theorem 7, we know that there exists a subsequence
{
rmi

}∞
i=1 and

a proability measure µ̂ such that {µ(rmi)}
∞
i=1 converges weakly to µ̂ and µ̂ is a

stationary distribution for Pr̄(·, ·) on [0,∞) × E. This contradicts Pr(limt→∞ at =

∞) = 1 for βR = 1.

Pr
(
{(at, et)}∞t=0 is bounded

)
= 1 for βR = 1.

In this case, Proposition 6 implies that there exists k̄(r̄) < ∞ such that

h(a, e) = 1 for a ≥ k̄(r̄) and e ∈ E. Following the same procedure as that in

the first part of Proof of Lemma 7, we pick a sufficiently large kM(r̄) > k̄(r̄) such

that
u2

[
c
(
kM(r̄), e; r̄

)
, 1

]
u1

[
c (kM(r̄), e; r̄) , 1

] > ew,∀e ∈ E.

From Proposition 12, we know that c(a, e; r) is continuous in r at r̄. Therefore,

we could find ε > 0 such that, for r ∈ (r̄ − ε, r̄), we have

u2

[
c
(
kM(r̄), e; r

)
, 1

]
u1

[
c (kM(r̄), e; r) , 1

] > ew,∀e ∈ E.

Thus we have h
[
kM(r0), e; r

]
= 1 for all e ∈ E. By the definition of k̄ in Equation

(6), we know that k̄(r) ≤ kM(r̄), for r ∈ (r̄ − ε, r̄). From Proposition 7 and the

definition of ā in Equation (11), we know that ā(r) < k̄(r), for r ∈ (−1, r̄). Thus,

ā(r) < k̄(r) < kM(r0), for r ∈ (r̄ − ε, r̄). For all r ∈ (r̄ − ε, r̄), we find a uniform

upper bound kM(r̄) for asset accumulation such that [0, ā(r)] ⊂ [0, kM(r̄)]. We

then use the same procedure as that in Proof of Lemma 7 to extend measure

µ(r) on [0, ā(r)] × E to [0, kM(r̄)] × E. The unique stationary distribution on

[0, kM(r̄)] × E is constructed by combining the stationary distribution µ(r) on

[0, ā(r)]×E and zero measure on (ā(r), kM(r̄)]×E. The collection of the extended

measure, {µ(r) : r ∈ (r̄ − ε, r̄)}, has common bounded support [0, kM(r̄)]×E. For

squence {rm}
∞
m=1 such that rm ↑ r̄, without loss of generality, we assume that

rm ∈ (r̄ − ε, r̄) for all m ≥ 1. Since [0, kM(r̄)] × E is bounded, we know that

{µ(rm)}∞m=1 is tight. Condition (d) of Thoerem 7 holds.

36



Conditions (a) and (c) of Theorem 7 obviously hold. We can also ver-

ify condition (b) of Theorem 7 as above. Thus Thereom 7 implies that there

exists a subsequence {rmi}
∞
i=1 such that

{
µ(rmi)

}∞
i=1 on [0, kM(r̄)] × E converges

weakly to a stationary distribution µ(r̄) on [0, kM(r̄)] × E. Moreover, we know

that limt→∞ ht = 1 almost surely in this case. Even though there could be in-

finitely many stationary distributions on [0, kM(r̄)]× E for r̄, we have µr̄({(a, e) :

h (a, e) = 1}) = 1 for any stationary distribution µ(r̄) on [0, kM(r̄)]×E. Following

the same procedure as that in Proof of Theorem 6, we have

lim
i→∞

L(rmi) = lim
i→∞

∫
S

e
[
1 − h(s; rmi)

]
dµ(rmi)

= lim
i→∞

∫
[0,kM(r̄)]×E

e
[
1 − h(s; rmi)

]
dµ(rmi)

=

∫
[0,kM(r̄)]×E

e [1 − h(s; r̄)] dµ(r̄) = 0,

We know from Proposition 5 that limt→∞ at = k̄(r̄) > 0 if a0 ∈ [0, k̄(r̄)], and

at = a0 for all t ≥ 0 if a0 > k̄(r̄). Consequently, we have µr̄({(a, e) : a > 0}) > 0.

Thus,

lim
i→∞

A(rmi) = lim
i→∞

∫
S

adµ(rmi) = lim
i→∞

∫
[0,kM(r̄)]×E

adµ(rmi)

=

∫
[0,kM(r̄)]×E

adµ(r̄) > 0.

Therefore, we know that limr↑r̄ L(r) = 0 and lim infr↑r̄ A(r) > 0.

Finally, we have

lim
r↑r̄

ζ(r) = lim
r↑r̄

A(r)
L(r)

= ∞.

�
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1.25 Proof of Theorem 8

Proof: From Proposition 13 we know that ζ(r) is a continuous function of r ∈

(−1, r̄). We also know that

lim
r↑r̄

ζ(r) = ∞.

The firm’s profit-maximization problem gives us a downward continuous

curve of D(r) = K
L (r). Thus, we have

lim
r↓−δ

D(r) = ∞,

and

lim
K
L ↓0

r = ∞.

There thus exists at least an intersection of these two curves. Additionally,

we know that −δ < r < r̄ and K
L > 0 in the stationary equilibrium. �

2 Appendix B

2.1 Proof of Proposition 8

Proof: If Case ii) of Assumption 2 holds, r ≤ 0 implies that c(a, e) > 0 ≥ ra for

a ≥ 0 and all e ∈ E. We know that c(a, e) ≥ ra for r > 0, from Proposition 2

posited by Acikgöz (2018). From Proposition 4 posited by Acikgöz (2018), we

also know that there exists kb > 0 such that a′(a, e) < a for a ≥ kb and all e ∈ E.

Next I will concentrate on Case i) of Assumption 2.5 If the borrowing con-

straint is binding, the indirect utility function J(Ra+ew, ew) of the intratemporal

problem is

J(Ra + ew, ew) = max
c,h

u(c, h)

5If Case ii) of Assumption 2 holds, we define Φ(c, q) = U′(c) for all q > 0. All results in the

following steps also hold.
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s.t. c + hew = Ra + ew, h ∈ [0, 1].

The optimal solutions of this problem are cs(Ra + ew, ew) and hs(Ra + ew, ew).

We define

ψ(a, e) = u1 [cs(Ra + ew, ew), hs(Ra + ew, ew)] ,

for (a, e) ∈ R+ × E.

If Case i) of Assumption 2 holds, for q > 0, there exists function ϕ(c, q) such

that

u2
[
c, ϕ(c, q)

]
= u1

[
c, ϕ(c, q)

]
q,

by the Implicit Function Theorem. We also know that ∂ϕ(c,q)
∂c = u21u1−u11u2

u12u2−u22u1
> 0 for

c > 0. For q > 0, let

σ1(q) =


∞, if Υ(q) is empty

inf Υ(q), if Υ(q) is not empty
,

where Υ(q) = {c > 0 : ϕ(c, q) ≥ 1}. Therefore, we have

j(c, q) =


ϕ(c, q), c ∈ (0, σ1(q)]

1, c ∈ (σ1(q),∞)
,

and

Φ(c, q) = u1
[
c, j(c, q)

]
=


u1

[
c, ϕ(c, q)

]
, c ∈ (0, σ1(q)]

u1(c, 1), c ∈ (σ1(q),∞)
.

For (a, e) ∈ R+ × E, we also observe that

hs(Ra + ew, ew) = j [cs(Ra + ew, ew), ew] ,

Ra − cs(Ra + ew, ew) + (1 − j [cs(Ra + ew, ew), ew])ew = 0,

and

Φ [cs(Ra + ew, ew), ew]

= u1
[
cs(Ra + ew, ew), j [cs(Ra + ew, ew), ew]

]
= u1 [cs(Ra + ew, ew), hs(Ra + ew, ew)]

= ψ(a, e).

39



Thus, we have ψ(a, e) = Φ [cs(Ra + ew, ew), ew] ≤ Φ [cs(ew, ew), ew] = ψ(0, e) <

∞ for (a, e) ∈ R+ × E.

Let L be the set of functions c : R+ × E → R+ such that c(a, e) is increasing

in a, 0 < c(a, e) ≤ cs(Ra + ew, ew), and

sup
(a,e)∈R+×E

|Φ [c(a, e), ew] − ψ(a, e)| < ∞.

For any c ∈ L, we have

sup
(a,e)∈R+×E

Φ [c(a, e), ew]

≤ sup
(a,e)∈R+×E

ψ(a, e) + sup
(a,e)∈R+×E

|Φ [c(a, e), ew] − ψ(a, e)|

≤ max
e∈E
{ψ(0, e)} + sup

(a,e)∈R+×E
|Φ [c(a, e), ew] − ψ(a, e)|

< ∞.

Thus, Φ [c(a, e), ew] is a bounded function of (a, e) ∈ R+ × E.

Define operator K on L by

Φ [Kc(a, e), ew]

= max
{
βRE

[
Φ(c(Ra − Kc(a, e) + (1 − j(Kc(a, e), ew))ew, e′), e′w)|e

]
, ψ(a, e)

}
.

Claim C1: For q > 0, Φ(c, q) is strictly decreasing in c ∈ (0,∞).

Proof of Claim C1: For 0 < c < σ1(q), we have j(c, q) = ϕ(c, q). Thus,

∂Φ(c, q)
∂c

= u11 + u12
∂ϕ(c, q)
∂c

= u11 + u12
u21u1 − u11u2

u12u2 − u22u1

= −u1
u11u22 − u21u12

u12u2 − u22u1
< 0.
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For 0 < c1 < σ1(e) < c2, we have j(σ1(q), q) = j(c2, q) = 1. Thus,

Φ(c1, q) > Φ(σ1(q), q)

= u1
[
σ1(q), j(σ1(q), q)

]
= u1

[
σ1(q), 1

]
> u1 [c2, 1]

= u1
[
c2, j(c2, q)

]
= Φ(c2, q).

For c > σ1(q), we have j(c, q) = 1 and Φ(c, q) = u1(c, 1). Thus,

∂Φ(c, q)
∂c

= u11(c, 1) < 0.

Therefore, for 0 < c1 < c2, we have Φ(c1, q) > Φ(c2, q). �

From Claim C1 we know that ψ(a, e) = Φ [cs(Ra + ew, ew), ew] is decreas-

ing in a.

Claim C2: For c ∈ L, Kc is a well-defined function and Kc ∈ L.

Proof of Claim C2: Fix (a, e) ∈ R+ × E and c ∈ L. Let

Π(x) = max
{
βRE

[
Φ(c(Ra − x + (1 − j(x, ew))ew, e′), e′w)|e

]
, ψ(a, e)

}
,

for 0 < x ≤ cs(Ra + ew, ew). Thus, Π(x) ≥ ψ(a, e) for 0 < x ≤ cs(Ra + ew, ew).

Furthermore, Π(x) is increasing in x since we know that Φ(x, ew) is decreasing

in x from Claim C1. We also know that Φ(x, ew) is strictly decreasing in x,

limx→0 Φ(x, ew) = limx→0 u1
[
x, ϕ(x, ew)

]
= ∞, and Φ(cs(Ra + ew, ew), ew) =

ψ(a, e). Thus, we have a unique solution 0 < x∗ ≤ cs(Ra + ew, ew) for the

quation

Φ(x, ew) = Π(x).

Let Kc(a, e) = x∗. Thus, Kc is a well-defined function.

We know that 0 < Kc(a, e) ≤ cs(Ra+ew, ew) since 0 < x∗ ≤ cs(Ra+ew, ew).

To show that Kc(a, e) is increasing in a, we suppose that Kc(a1, e) > Kc(a2, e)
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for 0 ≤ a1 < a2. Thus,

Φ [Kc(a1, e), ew]

< Φ [Kc(a2, e), ew]

= max
{
βRE

[
Φ(c(Ra2 − Kc(a2, e) + (1 − j(Kc(a2, e), ew))ew, e′), e′w)|e

]
, ψ(a2, e)

}
≤ max

{
βRE

[
Φ(c(Ra1 − Kc(a1, e) + (1 − j(Kc(a1, e), ew))ew, e′), e′w)|e

]
, ψ(a1, e)

}
= Φ [Kc(a1, e), ew] .

We have a contradiction. Therefore, Kc(a1, e) ≤ Kc(a2, e).

From ψ(a, e) = Φ [cs(Ra + ew, ew), ew] we have ψ(0, e) = Φ [cs(ew, ew), ew] =

u1 [cs(ew, ew), hs(ew, ew)] < ∞. We also know that Φ [Kc(a, e), ew] ≥ ψ(a, e).

Thus

|Φ [Kc(a, e), ew] − ψ(a, e)|

= Φ [Kc(a, e), ew] − ψ(a, e)

≤ max
{
E

[
Φ(c(Ra − Kc(a, e) + (1 − j(Kc(a, e), ew))ew, e′), e′w)|e

]
, ψ(a, e)

}
− ψ(a, e)

≤ max
{
E

[
Φ(c(0, e′), e′w)|e

]
, ψ(a, e)

}
− ψ(a, e)

≤ max
{
E

[
Φ(c(0, e′), e′w)|e

]
− ψ(a, e), 0

}
≤ E

[
Φ(c(0, e′), e′w)|e

]
≤ sup

(a,e)∈R+×E
|Φ [c(a, e), ew] − ψ(a, e)| + max

e∈E
{ψ(0, e)}

< ∞.

Therefore, we have

sup
(a,e)∈R+×E

|Φ [Kc(a, e), ew] − ψ(a, e)| < ∞.

�

For c, d ∈ L, define

ρ(c, d) = sup
(a,e)∈R+×E

|Φ [c(a, e), ew] − Φ [d(a, e), ew] |.
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Thus, we have ρ(c, d) ≥ 0. We also know that

ρ(c, d) = sup
(a,e)∈R+×E

|Φ [c(a, e), ew] − Φ [d(a, e), ew] |

≤ sup
(a,e)∈R+×E

|Φ [c(a, e), ew] − ψ(a, e)| + sup
(a,e)∈R+×E

|Φ [d(a, e), ew] − ψ(a, e)|

< ∞.

Apparently, ρ(c, d) = ρ(c, d). If ρ(c, d) = 0, we have

Φ [c(a, e), ew] = Φ [d(a, e), ew] ,∀(a, e) ∈ R+ × E.

Thus,

c(a, e) = d(a, e),∀(a, e) ∈ R+ × E,

since we know that Φ(c, q) is strictly decreasing in c ∈ (0,∞) from Claim C1.

For b, c, d ∈ L, we have

ρ(b, d) = sup
(a,e)∈R+×E

|Φ [b(a, e), ew] − Φ [d(a, e), ew] |

≤ sup
(a,e)∈R+×E

|Φ [b(a, e), ew] − Φ [c(a, e), ew] |

+ sup
(a,e)∈R+×E

|Φ [c(a, e), ew] − Φ [d(a, e), ew] |

= ρ(b, c) + ρ(c, d).

Therefore, (L, ρ) is a metric space.

Claim C3: Metric space (L, ρ) is complete.

Proof of Claim C3: Suppose that {cm}
∞
m=1 is a Cauchy sequence in (L, ρ).

Thus, for each (a, e) ∈ R+ × E, {Φ [cm(a, e), ew]}∞m=1 is a Cauchy sequence in R

and it has a finite limit t(a, e). For ε > 0, we choose Mε such that m, n ≥ Mε

implies that ρ(cm, cn) < ε
2 , since {cm}

∞
m=1 is a Cauchy sequence in (L, ρ). For
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each (a, e) ∈ R+ × E and m, n ≥ Mε, we have

|Φ [cm(a, e), ew] − t(a, e)| ≤ |Φ [cm(a, e), ew] − Φ [cn(a, e), ew] |

+|Φ [cn(a, e), ew] − t(a, e)|

≤ sup
(a,e)∈R+×E

|Φ [cm(a, e), ew] − Φ [cn(a, e), ew] |

+|Φ [cn(a, e), ew] − t(a, e)|

≤ ρ(cm, cn) + |Φ [cn(a, e), ew] − t(a, e)|

<
ε

2
+ |Φ [cn(a, e), ew] − t(a, e)|.

Since limm→∞Φ [cm(a, e), ew] = t(a, e) for each (a, e) ∈ R+×E, we can choose n

separately for each fixed (a, e) ∈ R+ × E such that |Φ [cn(a, e), ew] − t(a, e)| < ε
2 .

Therefore, we have

sup
(a,e)∈R+×E

|Φ [cm(a, e), ew] − t(a, e)| ≤ ε, (A.13)

for m ≥ Mε.

For each (a, e) ∈ R+ × E, we pick c0(a, e) > 0 such that

Φ [c0(a, e), ew] = t(a, e). (A.14)

Since Φ [cm(a, e), ew] ≥ ψ(a, e) = Φ [cs(Ra + ew, ew), ew] for all m ≥ 1, we

have t(a, e) ≥ ψ(a, e) = Φ [cs(Ra + ew, ew), ew]. Thus we have 0 < c0(a, e) ≤

cs(Ra+ew, ew). t(a, e) is decreasing in a since Φ [cm(a, e), ew] is decreasing in a.

Therefore, c0(a, e) is increasing in a. Combining Equations (A.13) and (A.14)

we have

ρ(cm, c0) = sup
(a,e)∈R+×E

|Φ [cm(a, e), ew] − Φ [c0(a, e), ew] | ≤ ε,
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for m ≥ Mε. Thus we have

sup
(a,e)∈R+×E

|Φ [c0(a, e), ew] − ψ(a, e)|

≤ sup
(a,e)∈R+×E

|Φ [c0(a, e), ew] − Φ [cm(a, e), ew] |

+ sup
(a,e)∈R+×E

|Φ [cm(a, e), ew] − ψ(a, e)|

≤ ε + sup
(a,e)∈R+×E

|Φ [cm(a, e), ew] − ψ(a, e)|

< ∞,

since cm ∈ implies that sup(a,e)∈R+×E |Φ [cm(a, e), ew] − ψ(a, e)| < ∞. Thus, the

Cauchy sequence {cm}
∞
m=1 converges to c0 ∈ L. Therefore, (L, ρ) is a complete

metric space. �

Claim C4: ρ(Kc,Kd) ≤ βRρ(c, d) for all c, d ∈ L.

Proof of Claim C4: Pick any c, d ∈. For each (a, e) ∈ R+ × E, we have

Φ [Kc(a, e), ew]

= max
{
βRE

[
Φ(c(Ra − Kc(a, e) + (1 − j(Kc(a, e), ew))ew, e′), e′w)|e

]
, ψ(a, e)

}
,

and

Φ [Kd(a, e), ew]

= max
{
βRE

[
Φ(d(Ra − Kd(a, e) + (1 − j(Kd(a, e), ew))ew, e′), e′w)|e

]
, ψ(a, e)

}
.

Without loss of generality, we assume that Kc(a, e) ≥ Kd(a, e). Thus,

Φ [Kd(a, e), ew]

= max
{
βRE

[
Φ(d(Ra − Kd(a, e) + (1 − j(Kd(a, e), ew))ew, e′), e′w)|e

]
, ψ(a, e)

}
≤ max

{
βRE

[
Φ(d(Ra − Kc(a, e) + (1 − j(Kc(a, e), ew))ew, e′), e′w)|e

]
, ψ(a, e)

}
.

Therefore, we have

Φ [Kd(a, e), ew] − Φ [Kc(a, e), ew]

≤ max
{
βRE

[
Φ(d(Ra − Kc(a, e) + (1 − j(Kc(a, e), ew))ew, e′), e′w)|e

]
, ψ(a, e)

}
−max

{
βRE

[
Φ(c(Ra − Kc(a, e) + (1 − j(Kc(a, e), ew))ew, e′), e′w)|e

]
, ψ(a, e)

}
.
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Thus,

|Φ [Kc(a, e), ew] − Φ [Kd(a, e), ew] |

≤

∣∣∣∣∣∣∣∣∣
βRE

[
Φ(c(Ra − Kc(a, e) + (1 − j(Kc(a, e), ew))ew, e′), e′w)|e

]
−βRE

[
Φ(d(Ra − Kc(a, e) + (1 − j(Kc(a, e), ew))ew, e′), e′w)|e

]
∣∣∣∣∣∣∣∣∣

≤ βRE


∣∣∣∣∣∣∣∣∣

Φ(c(Ra − Kc(a, e) + (1 − j(Kc(a, e), ew))ew, e′), e′w)

−Φ(d(Ra − Kc(a, e) + (1 − j(Kc(a, e), ew))ew, e′), e′w)

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ e


≤ βR

(
sup

(a′,e′)∈R+×E
|Φ

[
c(a′, e′), e′w

]
− Φ

[
d(a′, e′), e′w

]
|

)
= βRρ(c, d).

Therefore, we have ρ(Kc,Kd) ≤ βRρ(c, d). �

By Theorem 3.2 (Contraction Mapping Theorem) in Stokey and Lucas (1989),

we know that the operator K has a unique fixed point c ∈ L.6 Starting from any

c1 ∈ L, we generate a sequence
{
ci
}∞

i=1
by letting ci+1 = Kci for all i ≥ 1. We

also know that limi→∞ ρ(ci, c) = 0. This fixed point c is the candidate optimal

policy function of the original dynamic uitlity maximization problem.

If Case B) of Assumption 5 holds, we have

lim sup
c→∞

Ψ(c,∆) ≤ 1,∀∆ ≥ 0,

where

Ψ(c,∆) = max
h,h′∈[0,1]

{
u1(c, h′)

u1(c + ∆, h)

}
.

6An important implication of this contraction-mapping argument is that u1(c, h) is bounded.

Furthermore, we know that u1[c(0, e), h(0, e)] is bounded for all e ∈ E. Thus, mine∈E {c(0, e)} > 0

is the lower bound of consumption. To use this contraction-mapping argument, we do not

need Assumption 5. Moreover, this argument does not need the assumption that the utility

function u(c, h) has a lower bound. Li and Stachurski (2014), Acikgöz (2018), and Stachurski

and Toda (2019) apply this contraction-mapping argument to income fluctuation problems with

exogenous labor supply.
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Letting ∆ = 0, we have

Ψ(c, 0) = max
h,h′∈[0,1]

{
u1(c, h′)
u1(c, h)

}
.

Thus, for ε = 1
2

(
1
βR − 1

)
, there exists C̄ > 0 such that

u1(c, h′)
u1(c, h)

< 1 + ε,∀h, h′ ∈ [0, 1],

for all c ≥ C̄. Thus, there exists

Ā =
C̄
r
> 0,

such that
u1(ra, h′)
u1(ra, h)

< 1 + ε,∀h, h′ ∈ [0, 1],∀a ≥ Ā.

Claim C5: The fixed point of K satisfies

c(a, e) ≥ ra,∀e ∈ E,

for a ≥ Ā.

Proof of Claim C5: If r ≤ 0, then we have c(a, e) > 0 ≥ ra for a ≥ 0 and all

e ∈ E.

If r > 0, we pick c1 ∈ L, such that c1(a, e) = cs(Ra + ew, ew) for a ≥ 0 and

all e ∈ E. We have

c1(a, e) = cs(Ra + ew, ew)

= Ra + (1 − j [cs(Ra + ew, ew), ew])ew

≥ ra,

for a ≥ 0 and all e ∈ E.

For i ≥ 1, suppose that

ci(a, e) ≥ ra,∀(a, e) ∈ [Ā,∞) × E.
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We want to show that

ci+1(a, e) = Kci(a, e) ≥ ra,∀(a, e) ∈ [Ā,∞) × E.

Suppose that this is not true. Then we know that there exists (a, e) ∈ [Ā,∞) × E

such that

ci+1(a, e) = Kci(a, e) < ra.

Thus,

ci(Ra − Kci(a, e) + (1 − j(Kci(a, e), ew))ew, e′)

≥ r
[
Ra − Kci(a, e) + (1 − j(Kci(a, e), ew))ew

]
≥ r

[
Ra − Kci(a, e)

]
> r(Ra − ra)

= ra.

Therefore, we have

Φ(Kci(a, e), ew) = βRE
[
Φ(ci(Ra − Kci(a, e) + (1 − j(Kci(a, e), ew))ew, e′), e′w)|e

]
,

since Ra − Kci(a, e) + (1 − j(Kci(a, e), ew))ew > a ≥ Ā > 0. Thus,

Φ(ra, ew) < Φ(Kci(a, e), ew)

= βRE
[
Φ(ci(Ra − Kci(a, e) + (1 − j(Kci(a, e), ew))ew, e′), e′w)|e

]
< βRE

[
Φ(ra, e′w)|e

]
.

Thus we have

1 < βRE
[

Φ(ra, e′w)
Φ(ra, ew)

∣∣∣∣∣ e]
= βRE

[
u1

[
ra, j(ra, e′w)

]
u1

[
ra, j(ra, ew)

] ∣∣∣∣∣∣ e
]

< βR(1 + ε) =
1
2

(βR + 1) < 1.
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We have a contradiction.

By mathetical induction, we have, for all (a, e) ∈ [Ā,∞) × E,

ci(a, e) ≥ ra,∀i ≥ 1.

Thus we have

Φ(ci(a, e), ew) ≤ Φ(ra, ew),∀i ≥ 1.

since we know from Claim C1 that Φ(·, ew) is a strictly decreasing function.

Since limi→∞ ρ(ci, c) = 0 implies that limi→∞Φ(ci(a, e), ew) = Φ(c(a, e), ew), we

have Φ(c(a, e), ew) ≤ Φ(ra, ew), i.e.

c(a, e) ≥ ra.

�

Claim C6: The first-order conditions

u1(ct, ht) ≥ βREtu1(ct+1, ht+1), with equality if at+1 > 0, (A.15)

u2(ct, ht) ≥ u1(ct, ht)ew, with equality if ht < 1, (A.16)

and the transversality condition

lim
t→∞

E0β
tu1(ct, ht)at+1 = 0, (A.17)

are sufficient for the optimal solution of the original dynamic utility maximiza-

tion problem.

Proof of Claim C6: For a0 ≥ 0, {(ct, ht, at+1)}∞t=0 is a feasible sequence satis-

fying

ct + at+1 = Rat + (1 − ht)etw,∀t ≥ 0,

and

at+1 ≥ 0,∀t ≥ 0.
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The path {(ct, ht, at+1)}∞t=0 satisfies the first-order conditions and the transversality

condition.
{
(ĉt, ĥt, ât+1)

}∞
t=0

is an alternative feasible sequence starting from â0 =

a0 and satisfying

ĉt + ât+1 = Rât + (1 − ĥt)etw,∀t ≥ 0,

and

ât+1 ≥ 0,∀t ≥ 0.

From the budget constraints, we have

ct − ĉt = R (at − ât) − (at+1 − ât+1) −
(
ht − ĥt

)
etw.

Since u(c, h) is strictly concave in c and h, we have

u(ct, ht) − u(ĉt, ĥt)

≥ u1(ct, ht)(ct − ĉt) + u2(ct, ht)(ht − ĥt)

≥ u1(ct, ht)
[
R (at − ât) − (at+1 − ât+1) −

(
ht − ĥt

)
etw

]
+ u2(ct, ht)(ht − ĥt)

≥ u1(ct, ht) [R (at − ât) − (at+1 − ât+1)] + [u2(ct, ht) − u1(ct, ht)etw] (ht − ĥt).

From the labor-leisure decision equation (A.16), we know that ht < 1 implies

that u2(ct, ht)− u1(ct, ht)etw = 0. Furthermore, ht = 1 implies that ht − ĥt ≥ 0. In

these two cases we have

[u2(ct, ht) − u1(ct, ht)etw]
(
ht − ĥt

)
≥ 0.

Therefore, we have

u(ct, ht) − u(ĉt, ĥt)

≥ u1(ct, ht) [R (at − ât) − (at+1 − ât+1)] .
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For T ≥ 1 we have

E0
T
t=0β

t
[
u(ct, ht) − u(ĉt, ĥt)

]
≥ E0

T
t=0β

tu1(ct, ht) [R (at − ât) − (at+1 − ât+1)]

= E0
T−1
t=0 β

t [u1(ct, ht) − βREtu1(ct+1, ht+1)
]
(ât+1 − at+1)

−E0β
T u1(cT , hT ) (aT+1 − âT+1) .

From the Euler equation (A.15) we know that at+1 > 0 implies that u1(ct, ht)−

βREtu1(ct+1, ht+1) = 0. Moreover, at+1 = 0 implies that ât+1 − at+1 ≥ 0. In these

two cases we have

[
u1(ct, ht) − βREtu1(ct+1, ht+1)

]
(ât+1 − at+1) ≥ 0.

Therefore, we have

E0
T−1
t=0 β

t [u1(ct, ht) − βREtu1(ct+1, ht+1)
]
(ât+1 − at+1) ≥ 0.

Thus, we have

E0
T
t=0β

t
[
u(ct, ht) − u(ĉt, ĥt)

]
≥ −E0β

T u1(cT , hT ) (aT+1 − âT+1)

≥ −E0β
T u1(cT , hT )aT+1,

since âT+1 ≥ 0. By the transversality condition (A.17), we have

E0
∞
t=0β

t
[
u(ct, ht) − u(ĉt, ĥt)

]
≥ − lim

T→∞
E0β

T u1(cT , hT )aT+1 = 0.

Thus, the path {(ct, ht, at+1)}∞t=0 is optimal. �

Now I verify that the fixed point of operator K satisfies all the conditions

in Claim C6. By the construction of the opertaor K, its fixed point c ∈ L

satisfies the first-order condtitions (A.15) and (A.16). We only need to verify

the transversality condition (A.17). For any c ∈ L, Φ [c(a, e), ew] is a bounded
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function of (a, e) ∈ R+ × E. Thus, {u1(ct, ht)}∞t=0 is bounded. Then, we only need

to show

lim
t→∞

E0β
tat+1 = 0.

From Claim C5 we have

at+1 = Rat − ct + (1 − ht)etw

≤ Rat − rat + (1 − ht)etw

≤ at + etw

≤ at + enw,

for all t ≥ 0. Thus, we have

at+1 ≤ a0 + (t + 1)enw.

Apparently, we have limt→∞ E0β
tat+1 = 0.

Suppose that, for some e ∈ E, we can pick sequence {am}
∞
m=1 such that

a′(am, e) ≥ am for m ≥ 1, and limm→∞ am = ∞. Thus, we have

c(am, e) = Ram − a′(am, e) + (1 − hm)ew

≤ Ram − am + (1 − hm)ew

= ram + (1 − hm)ew

≤ ram + ew.

If r ≤ 0, then c(am, e) ≤ ew for m ≥ 1. We have a contradiction since

limm→∞ am = ∞ implies that limm→∞ c(am, e) = ∞ from part 1) of Proposition 3.

If r > 0, we have a′(am, e) ≥ am ≥ Ā > 0 for am ≥ Ā. Thus, we know that

c(a′(am, e), e′) ≥ ra′(am, e) ≥ ram,∀e ∈ E,

from Claim C5. Therefore, we have

Φ [c(am, e), ew] = βRE
[
Φ(c(a′(am, e), e′), e′w)|e

]
≤ βRE

[
Φ(ram, e′w)|e

]
.
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Thus,

Φ(ram + ew, ew) ≤ Φ [c(am, e), ew] ≤ βRE
[
Φ(ram, e′w)|e

]
.

Therefore, we have

E
[

Φ(ram, e′w)
Φ(ram + ew, ew)

∣∣∣∣∣ e] ≥ 1
βR
,

which implies that there exists e′ ∈ E and a subsequence
{
ami

}∞
i=1 such that

max
h,h′∈[0,1]

{
u1(rami , h

′)
u1(rami + ew, h)

}
≥

u1
[
rami , j(rami , e

′w)
]

u1
[
rami + ew, j(rami + ew, ew)

] ≥ 1
βR

> 1,

since E is a finite set. Therefore, we have

lim sup
c→∞

Ψ(c, ew) ≥
1
βR

> 1,

which contradicts Case B) of Assumption 5.

Consequently, we know that there exists kb > 0 such that

a′(a, e) < a,∀e ∈ E,

for a ≥ kb. �

3 Appendix C

3.1 Proof of Theorem 7

Proof: For any bounded continuous function f on X, define

(Tθ f )(x) =

∫
X

f (x′)Pθ(x, dx′),∀x ∈ X,∀θ ∈ Θ,

and

〈 f , λ〉 =

∫
X

f (x)λ(dx),∀λ ∈ Λ(X,B(X)).

Define operator T ∗θ on Λ(X,B(X)) by

(T ∗θλ)(B) =

∫
X

Pθ(x, B)λ(dx),∀B ∈ B(X).
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From Theorem 8.3 and its corollary, posited by Stoky and Lucas (1989), we

have

〈Tθ f , λ〉 =
〈

f ,T ∗θλ
〉
,∀λ ∈ Λ(X,B(X)).

Condition (b) implies that (Tθ f )(x) is continuous in (x, θ). Let Θ̂ ⊂ Θ be a

compact set containing {θn}
∞
n=1 and θ0. Thus, it is uniformly continuous on the

compact set C× Θ̂, where C is a compact subset of X. Condition (c) implies that

(T ∗θn
µn)(B) = µn(B),∀B ∈ B(X).

For ε > 0, condition (d) implies that we can pick compact set C ⊂ X such

that

µn(X\C) ≤
ε

4|| f ||
,∀n ≥ 1,

where || f || = supx∈X | f (x)| < ∞ is the sup norm of f . Since {θn}
∞
n=1 and θ0 lie in Θ̂

and limn→∞ θn = θ0, it follows from the uniform continuity of (Tθ f )(x) on C × Θ̂

that there exists N ≥ 1 such that

|(Tθn f )(x) − (Tθ0 f )(x)| <
ε

2
,∀x ∈ C,∀n ≥ N.
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Thus we have

|
〈
Tθn f , µn

〉
−

〈
Tθ0 f , µn

〉
|

= |
〈
Tθn f − Tθ0 f , µn

〉
|

≤
〈
|Tθn f − Tθ0 f |, µn

〉
=

∫
X

∣∣∣(Tθn f )(x) − (Tθ0 f )(x)
∣∣∣ µn(dx)

=

∫
C

∣∣∣(Tθn f )(x) − (Tθ0 f )(x)
∣∣∣ µn(dx) +

∫
X\C

∣∣∣(Tθn f )(x) − (Tθ0 f )(x)
∣∣∣ µn(dx)

≤

∫
X

ε

2
µn(dx) +

∫
X\C

∣∣∣(Tθn f )(x) − (Tθ0 f )(x)
∣∣∣ µn(dx)

≤
ε

2
+

∫
X\C

[∣∣∣(Tθn f )(x)
∣∣∣ +

∣∣∣(Tθ0 f )(x)
∣∣∣] µn(dx)

≤
ε

2
+

∫
X\C

2|| f ||µn(dx)

≤
ε

2
+
ε

2
= ε,

since |(Tθ f )(x)| =
∣∣∣∫

X
f (x′)Pθ(x, dx′)

∣∣∣ ≤ || f ||. Therefore, we have

|
〈
Tθn f , µn

〉
−

〈
Tθ0 f , µn

〉
| < ε,∀n ≥ N.

That is,

lim
n→∞
|
〈
Tθn f , µn

〉
−

〈
Tθ0 f , µn

〉
| = 0. (A.18)

We know that {µn}
∞
n=1 is tight from condition (d). From Theorem 5.1 posited

by Billingsley (1999), we know that it has a weakly convergent subsequence.

Let {µni}
∞
i=1 be such a subsequence, and let µ̂ be its limit. Thus, for any bounded

continuous function f on X, we have

| 〈 f , µ̂〉 −
〈
Tθ0 f , µ̂

〉
|

≤ | 〈 f , µ̂〉 −
〈

f , µni

〉
| + |

〈
f , µni

〉
−

〈
Tθ0 f , µni

〉
| + |

〈
Tθ0 f , µni

〉
−

〈
Tθ0 f , µ̂

〉
|.

Since f and Tθ0 f are bounded continuous functions on X, and {µni}
∞
i=1 converges

weakly to µ̂, we have limi→∞ | 〈 f , µ̂〉 −
〈

f , µni

〉
| = 0 and limi→∞ |

〈
Tθ0 f , µni

〉
−
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〈
Tθ0 f , µ̂

〉
| = 0. By Equation (A.18) we also have

lim
i→∞
|
〈

f , µni

〉
−

〈
Tθ0 f , µni

〉
| = lim

i→∞
|
〈

f ,T ∗θni
µni

〉
−

〈
Tθ0 f , µni

〉
|

= lim
i→∞
|
〈
Tθni

f , µni

〉
−

〈
Tθ0 f , µni

〉
|

= 0.

Thus, for any bounded continuous function f on X, we have

〈 f , µ̂〉 =
〈
Tθ0 f , µ̂

〉
=

〈
f ,T ∗θ0

µ̂
〉
.

Hence, by Corollary 2 to Theorem 12.6 proposed by Stokey and Lucas (1989),

we have

µ̂(B) = (T ∗0 µ̂)(B),∀B ∈ B(X).

Thus, µ̂ is a fixed point of Pθ0(·, ·). �
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